Implementasi Algoritma XGBoost Classifier untuk Klasifikasi Kerumunan Jemaah Haji dan Umrah
Implementation of the XGBoost Classifier Algorithm for Classifying Crowds of Hajj and Umrah Pilgrims
DOI:
https://doi.org/10.57152/malcom.v6i1.2245Keywords:
Extreme Gradient Boosting, Haji dan Umrah, Kepadatan Kerumunan, Klasifikasi, Pembelajaran MesinAbstract
Efektivitas manajemen kerumunan menjadi aspek penting dalam pelaksanaan ibadah haji dan umrah, mengingat mobilitas jemaah yang sangat tinggi pada waktu dan lokasi tertentu. Kepadatan yang tidak terkendali berpotensi menimbulkan risiko keselamatan dan mengganggu kelancaran ibadah. Penelitian ini mengusulkan pendekatan klasifikasi tingkat kepadatan kerumunan (crowd density) dengan memanfaatkan data operasional yang merepresentasikan dinamika pergerakan, perilaku individu, dan kondisi lingkungan. Dataset yang digunakan terdiri dari 10.000 entri dengan 29 fitur. Algoritma Extreme Gradient Boosting (XGBoost) dipilih karena kemampuannya mengolah data kompleks dan heterogen. Hasil pengujian menunjukkan akurasi 98.7%, precision 99%, recall 99%, dan f1-score 99% untuk kategori rendah, sedang, dan tinggi, baik pada macro maupun weighted average. Temuan ini menunjukkan bahwa model yang dikembangkan memiliki tingkat akurasi dan keandalan yang tinggi dalam memprediksi kepadatan kerumunan.
Downloads
References
N. Syamsiyah, “Strategi Pemasaran Produk Umrah pada Travel Smarts Umrah Lampung,” Multazam?: Jurnal Manajemen Haji dan Umrah, vol. 3, no. 1, p. 1, Jun. 2023, doi: 10.32332/multazam.v3i1.5399.
N. R. Aisy and Muzakki, “Pendampingan Manasik Haji Untuk Mengembangkan Nilai Agama Dan Moral Di RA Ar-Raudhah Desa Hampalit Corresponding Author,” Jurnal Pengabdian Masyarakat, vol. 1, no. 4, pp. 199–204, Feb. 2024, doi: 10.59837/y47chb79.
M. A. Yaqin and A. Tholib, “Implementasi Manasik Haji dengan Teknologi Vr (Virtual Reality) untuk Mencegah Penyebaran Virus Covid-19,” Dinamika Informatika, vol. 14, no. 2, 2022, doi: 10.35315/informatika.v14i2.9185.
A. Chulaivi, I. Z. Khazimi, M. Ikram, and A. Hafiz, “Efektivitas Manajemen Haji dan Umrah dalam Meningkatkan Kepuasan Jamaah di Indonesia: Sebuah Studi Literatur,” LANCAH: Jurnal Inovasi dan Tren, vol. 2, no. 2b, Jul. 2024, doi: 10.35870/ljit.v2i2b.2957.
R. Bhuiyan et al., “Deep Dilated Convolutional Neural Network for Crowd Density Image Classification with Dataset Augmentation for Hajj Pilgrimage,” Sensors, vol. 22, no. 14, Jul. 2022, doi: 10.3390/s22145102.
W. Halboob, H. Altaheri, A. Derhab, and J. Almuhtadi, “Crowd Management Intelligence Framework: Umrah Use Case,” IEEE Access, vol. 12, pp. 6752–6767, 2024, doi: 10.1109/ACCESS.2024.3350188.
F. E. Permana and M. Hafil, “Lebih dari 18,5 Juta Muslim Tunaikan Haji dan Umroh di 2024,” Republika. [Online]. Available: https://khazanah.republika.co.id/berita/sqh3xe430/lebih-dari-185-juta-muslim-tunaikan-haji-dan-umroh-di-2024.[22 Januari 2025]
M. Dava Maulana et al., “Algoritma XGboost Untuk Klasifikasi Kualitas Air Minum,” Cimahi, 2023. doi: 10.36040/jati.v7i5.7308.
T. T. H. Le, Y. E. Oktian, and H. Kim, “XGBoost for Imbalanced Multiclass Classification-Based Industrial Internet of Things Intrusion Detection Systems,” Sustainability (Switzerland), vol. 14, no. 14, Jul. 2022, doi: 10.3390/su14148707.
A. Mehdary, A. Chehri, A. Jakimi, and R. Saadane, “Hyperparameter Optimization with Genetic Algorithms and XGBoost: A Step Forward in Smart Grid Fraud Detection,” Sensors, vol. 24, no. 4, Feb. 2024, doi: 10.3390/s24041230.
H. Joe and H. G. Kim, “Multi-label classification with XGBoost for metabolic pathway prediction,” BMC Bioinformatics, vol. 25, no. 1, pp. 1–15, Dec. 2024, doi: 10.1186/s12859-024-05666-0.
J. Abualdenien and A. Borrmann, “Ensemble-learning approach for the classification of Levels Of Geometry (LOG) of building elements,” Advanced Engineering Informatics, vol. 51, pp. 1–15, Jan. 2022, doi: 10.1016/j.aei.2021.101497.
W. Su et al., “An XGBoost-Based Knowledge Tracing Model,” International Journal of Computational Intelligence Systems, vol. 16, no. 1, Dec. 2023, doi: 10.1007/s44196-023-00192-y.
E. Sahelvi, P. Cikita, R. Mela Sapitri, and L. Efrizoni, “Perbandingan Algoritma K-Nearest Neighbors dan Random Forest untuk Rekomendasi Gaya Hidup Sehat dalam Mencegah Penyakit Jantung,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 5, no. 5, pp. 830–840, Jul. 2025, doi: 10.57152/malcom.v5i3.1972.
A. Tarisa Akbar, N. Yudistira, and A. Ridok, “Identifikasi Gagal Ginjal Kronis dengan Mengimplementasikan Metode Support Vector Machine beserta K-Nearest Neighbour (Svm-Knn),” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 10, no. 2, pp. 301–308, Apr. 2023, doi: 10.25126/jtiik.2023106059.
Y. Firmansyah, E. Ernawati, and E. L. Prawiro, “Sistem Skoring untuk Memprediksi Kejadian Hipertensi pada Usia Produktif Di Kota Medan (Preliminary Study),” Jurnal Muara Sains, Teknologi, Kedokteran dan Ilmu Kesehatan, vol. 4, no. 1, p. 55, May 2020, doi: 10.24912/jmstkik.v4i1.6013.
S. K. M. Hossain, S. A. Ema, and H. Sohn, “Rule-Based Classification Based on Ant Colony Optimization: A Comprehensive Review,” 2022, Hindawi Limited. doi: 10.1155/2022/2232000.
C. Herdian, A. Kamila, and I. G. Agung Musa Budidarma, “Studi Kasus Feature Engineering Untuk Data Teks: Perbandingan Label Encoding dan One-Hot Encoding Pada Metode Linear Regresi,” Technologia?: Jurnal Ilmiah, vol. 15, no. 1, p. 93, Jan. 2024, doi: 10.31602/tji.v15i1.13457.
A. Ramadhani, N. Safaat Harahap, S. Agustian, I. Iskandar, and S. Sanjaya, “Perbandingan Performa Metode Klasifikasi Teks Multilabel Hadis Terjemahan Bukhari Menggunakan Support Vector Machine dan Long Short Term Memory,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 5, no. 3, pp. 896–907, Jul. 2025, doi: 10.57152/malcom.v5i3.2051.
I. Ivanov, B. Toleva, and V. J. Hooper, “A fast and effective approach for classification medical data sets,” International Journal of Innovative Research and Scientific Studies, vol. 6, no. 3, pp. 545–552, Apr. 2023, doi: 10.53894/ijirss.v6i3.1580.
O. El Gannour, S. Hamida, Y. Lamalem, M. A. Mahjoubi, B. Cherradi, and A. Raihani, “Improving skin diseases prediction through data balancing via classes weighting and transfer learning,” Bulletin of Electrical Engineering and Informatics, vol. 13, no. 1, pp. 628–637, Feb. 2024, doi: 10.11591/eei.v13i1.5999.
A. D. Rachmatsyah, T. Sugihartono, and K. Irfan, “Perbandingan Teknik Optimasi Grid Search dan Randomized Search dalam Meningkatkan Akurasi Metode Klasifikasi SVM Pada Sentimen Ulasan Pengguna Aplikasi JKN Mobile,” SKANIKA: Sistem Komputer dan Teknik Informatika, vol. 8, no. 1, pp. 13–22, Jan. 2025, doi: 10.36080/skanika.v8i1.3328.
F. Baldo, J. Grando, Y. Yamada Correa, and D. Amorim Policarpo, “Adaptive Fast XGBoost for Multiclass Classification,” Journal of Information and Data Management, vol. 14, no. 1, Oct. 2023, doi: 10.5753/jidm.2023.3150.
S. Zhou, C. Chen, G. Han, and X. Hou, “Double additive margin softmax loss for face recognition,” Applied Sciences (Switzerland), vol. 10, no. 1, Jan. 2020, doi: 10.3390/app10010060.
X. Li et al., “Probabilistic solar irradiance forecasting based on XGBoost,” Energy Reports, vol. 8, pp. 1087–1095, Aug. 2022, doi: 10.1016/j.egyr.2022.02.251.
K. Shaheed, Q. Abbas, A. Hussain, and I. Qureshi, “Optimized Xception Learning Model and XgBoost Classifier for Detection of Multiclass Chest Disease from X-ray Images,” Diagnostics, vol. 13, no. 15, pp. 1–25, Aug. 2023, doi: 10.3390/diagnostics13152583.
P. Zhang, Y. Jia, and Y. Shang, “Research and application of XGBoost in imbalanced data,” Int J Distrib Sens Netw, vol. 18, no. 6, Jun. 2022, doi: 10.1177/15501329221106935.
M. Valavan and S. Rita, “Predictive-Analysis-based Machine Learning Model for Fraud Detection with Boosting Classifiers,” Computer Systems Science and Engineering, vol. 45, no. 1, pp. 231–245, 2023, doi: 10.32604/csse.2023.026508.
K. Riehl, M. Neunteufel, and M. Hemberg, “Hierarchical confusion matrix for classification performance evaluation,” J R Stat Soc Ser C Appl Stat, vol. 72, no. 5, pp. 1394–1412, Nov. 2023, doi: 10.1093/jrsssc/qlad057.
S. Widodo, H. Brawijaya, and S. Samudi, “Stratified K-fold cross validation optimization on machine learning for prediction,” Sinkron, vol. 7, no. 4, pp. 2407–2414, Oct. 2022, doi: 10.33395/sinkron.v7i4.11792.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rahmattun Illaihiyah, Ginanjar Abdurrahman, Daryanto Daryanto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright © by Author; Published by Institut Riset dan Publikasi Indonesia (IRPI)
This Indonesian Journal of Machine Learning and Computer Science is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

















