Perbandingan Performansi Algoritma Multiple Linear Regression dan Multi Layer Perceptron Neural Network dalam Memprediksi Penjualan Obat

Comparison of the Performance of Multiple Linear Regression Algorithms and Multi Layer Perceptron Neural Networks in Predicting Drug Sales

Authors

  • Danang Arifuddin Universitas Amikom Yogyakarta
  • Kusrini Kusrini Universitas Amikom Yogyakarta
  • Kusnawi Kusnawi Universitas Amikom Yogyakarta

DOI:

https://doi.org/10.57152/malcom.v5i2.1952

Keywords:

Farmasi, Machine Learning, Multiple Linear Regression, Sales Prediction

Abstract

Penelitian ini mengevaluasi pemilihan atribut dari variabel internal (jumlah penjualan) dan eksternal (cuaca, harga komoditas, inflasi) menggunakan metode korelasi, serta membandingkan performansi algoritma Multiple Linear Regression (MLR) dan Multi-Layer Perceptron Neural Network dengan backpropagation (MLPNN-b) dalam memprediksi penjualan obat analgesik di “Apotek XYZ”. Metrik evaluasi Mean Squared Error (MSE) dan Mean Absolute Percentage Error (MAPE) digunakan untuk mengukur akurasi prediksi. Hasil menunjukkan bahwa atribut internal "h-7" memiliki korelasi tertinggi (0,35) terhadap penjualan harian, sementara variabel eksternal seperti suhu harian, harga bawang merah, dan suku bunga juga memberikan kontribusi. Algoritma MLPNN-b dengan parameter tertentu mencapai MAPE 22,3% dan MSE 19.588 pada atribut tunggal, sedangkan MLR memiliki kinerja lebih merata pada atribut kombinasi dengan MAPE 25,6% dan MSE 22.768. Namun, kedua model masih mengalami underfitting dengan tingkat kesalahan prediksi yang cukup tinggi. Penelitian ini menyimpulkan bahwa meskipun MLPNN lebih unggul dalam menangkap hubungan non-linear dibandingkan MLR, akurasi prediksi masih belum optimal. Oleh karena itu, eksplorasi model hybrid serta integrasi lebih banyak variabel eksternal direkomendasikan untuk meningkatkan prediksi penjualan dan mendukung sistem manajemen stok farmasi yang lebih akurat.

Downloads

Download data is not yet available.

References

G. Emmanuel, A. N. Hidayanto, and H. Prabowo, “A Literature Review: Drug Supply Chain and Neural Networks,” in 2022 6th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), IEEE, 2022, pp. 559–564. http://dx.doi.org/10.21203/rs.3.rs-3932079/v1

A. Nguyen, O. Bougacha, B. Lekens, S. Lamouri, R. Pellerin, and C. Couvreur, “On the use of logistics data to anticipate drugs shortages through data mining,” Procedia Comput Sci, vol. 219, pp. 949–956, 2023. https://doi.org/10.1016/j.procs.2023.01.371

European Association of Hospital Pharmacists, “EAHP Medicines Shortages Surveys,” European Association of Hospital Pharmacists. https://doi.org/10.1136/ejhpharm-2024-004090

N. Tampati, “Prediksi Stok Obat pada Apotik Total Life Clinic Menggunakan Model Kombinasi Artificial Neural Network dan ARIMA,” JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), vol. 9, no. 1, pp. 49–58, 2022. https://doi.org/10.35957/jatisi.v9i1.1373.

M. Du, J. Luo, S. Wang, and S. Liu, “Genetic algorithm combined with BP neural network in hospital drug inventory management system,” Neural Comput Appl, vol. 32, pp. 1981–1994, 2020. https://link.springer.com/article/10.1007/s00521-019-04379-3.

R. Rathipriya, A. A. Abdul Rahman, S. Dhamodharavadhani, A. Meero, and G. Yoganandan, “Demand forecasting model for time-series pharmaceutical data using shallow and deep neural network model,” Neural Comput Appl, vol. 35, no. 2, pp. 1945–1957, 2023. https://doi.org/10.1007/s00521-022-07889-9

S. Sahoo and M. K. Jha, “Groundwater-level prediction using multiple linear regression and artificial neural network techniques: a comparative assessment,” Hydrogeol J, vol. 21, no. 8, p. 1865, 2013. http://dx.doi.org/10.1007/s10040-013-1029-5.

S. Romano, H. Galante, D. Figueira, Z. Mendes, and A. T. Rodrigues, “Time-trend analysis of medicine sales and shortages during COVID-19 outbreak: Data from community pharmacies,” Research in Social and Administrative Pharmacy, vol. 17, no. 1, pp. 1876–1881, 2021. http://dx.doi.org/10.1016/j.sapharm.2020.05.024.

D. Saputra, “Analisis Pengendalian Internal Dalam Pengelolaan Persediaan Obat Pada Apotek Di Pekanbaru,” Jurnal Akuntansi dan Ekonomika, vol. 12, no. 1, pp. 23–33, 2022. https://doi.org/10.37859/jae.v12i1.3189.

V. Reinstadler et al., “Monitoring drug consumption in Innsbruck during coronavirus disease 2019 (COVID-19) lockdown by wastewater analysis,” Science of the Total Environment, vol. 757, p. 144006, 2021. https://doi.org/10.1016/j.scitotenv.2020.144006.

D. A. Maulana, “Penggunaan Multiple Linear Regression Untuk Memprediksi Jumlah Kasus Campak Di Indonesia,” Universitas Islam Sultan Agung Semarang, 2024.

S. Pratista, “Perbandingan Teknik Prediksi Pemakaian Obat Menggunakan Algoritma Simple Linear Regression dan Support Vector Regression,” Journal Building of Informatics, Technology and Science (BITS), vol. 5, no. 2, pp. 456–465, 2023. https://doi.org/10.47065/bits.v5i2.4260.

L. M. Ginting, M. M. T. Sigiro, E. D. Manurung, and J. J. P. Sinurat, “Perbandingan Metode Algoritma Support Vector Regression dan Multiple Linear Regression Untuk Memprediksi Stok Obat,” J. Appl. Technol. Informatics Indones, vol. 1, no. 2, pp. 29–34, 2021. https://doi.org/10.47065/comforch.v3i1.1063.

S. Agnesti, A. Nazir, I. Iskandar, E. Budianita, and I. Afrianty, “Comparison of Triple Exponential Smoothing and Support Vector Regression Algorithms in Predicting Drug Usage at Puskesmas,” Sistemasi: Jurnal Sistem Informasi, vol. 12, no. 3, pp. 996–1006, 2023. https://doi.org/10.32520/stmsi.v12i3.3499.

P. H. Artanti, “Penerapan Neural Network dengan optimasi Ant Colony Optimization dan Backpropagation untuk membangun model prediksi diabetes tahap awal,” Universitas Islam Negeri Maulana Malik Ibrahim, 2023. https://doi.org/10.47065/josh.v6i1.6018.

D. Yustisio, “Perbandingan Metode Extreme Learning Machine (ELM) dan Metode Multilayer Perceptron (MLP) Dalam Prediksi Jumlah Pasien Covid-19 Kota Semarang”. https://eprints.walisongo.ac.id/id/eprint/18407.

D. B. Arianto, “Pengembangan Model Named Entity Recognition Untuk Pengenalan Entitas Pada Data Obat Indonesia,” 2023.

E. T. L. Kusrini and E. Taufiq, “Algoritma data mining,” Yogyakarta: Andi Offset, 2009.

D. T. Larose, “An introduction to data mining,” Traduction et adaptation de Thierry Vallaud, p. 23, 2005.

X. Long and W. Chen, “Construction framework of smart tourism big data mining model driven by blockchain technology,” Heliyon, vol. 10, no. 14, 2024. https://doi.org/10.1016/j.heliyon.2024.e34159.

A. Alabrah, “An improved CCF detector to handle the problem of class imbalance with outlier normalization using IQR method,” Sensors, vol. 23, no. 9, p. 4406, 2023. https://doi.org/10.3390/s23094406.

D. Kurniawan, Pengenalan machine learning dengan python. Elex Media Komputindo, 2022.

M.-C. Popescu, V. E. Balas, L. Perescu-Popescu, and N. Mastorakis, “Multilayer perceptron and neural networks,” WSEAS Transactions on Circuits and Systems, vol. 8, no. 7, pp. 579–588, 2009.

Z. Lyu et al., “Back-propagation neural network optimized by K-fold cross-validation for prediction of torsional strength of reinforced Concrete beam,” Materials, vol. 15, no. 4, p. 1477, 2022. https://doi.org/10.3390/ma15041477.

Larose, “Discovering Knowledge in Data: An Introduction to Data Mining,” 2005.

S. Rath, A. Tripathy, and A. R. Tripathy, “Prediction of new active cases of coronavirus disease (COVID-19) pandemic using multiple linear regression model,” Diabetes & metabolic syndrome: clinical research & reviews, vol. 14, no. 5, pp. 1467–1474, 2020. https://doi.org/10.1016/j.dsx.2020.07.045.

T. Filimonova, H. Samoylenko, A. Selivanova, Y. Yurchenko, and A. Parashchak, “Construction Of A Neural Network For Handwritten Digits Recognition Based On Tensorflow Library Applying An Error Backpropagation Algorithm.,” Eastern-European Journal of Enterprise Technologies, vol. 126, no. 2, 2023. https://doi.org/10.15587/1729-4061.2023.293682.

M. Desai and M. Shah, “An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN),” Clinical eHealth, vol. 4, pp. 1–11, 2021. https://doi.org/10.1016/j.ceh.2020.11.002.

F. Altamevia, H. O. L. Wijaya, and E. Elmayati, “Analisis Pola Penjualan Obat di Apotek Srikandi Menggunakan Algoritma Supervised Learning,” Kesatria: Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen), vol. 4, no. 1, pp. 170–176, 2023. https://doi.org/10.30645/kesatria.v4i3.202.

Downloads

Published

2025-04-20

How to Cite

Arifuddin, D., Kusrini, K., & Kusnawi, K. (2025). Perbandingan Performansi Algoritma Multiple Linear Regression dan Multi Layer Perceptron Neural Network dalam Memprediksi Penjualan Obat: Comparison of the Performance of Multiple Linear Regression Algorithms and Multi Layer Perceptron Neural Networks in Predicting Drug Sales. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 5(2), 722-737. https://doi.org/10.57152/malcom.v5i2.1952