Revolutionizing Corporate Event Planning with AI: A Cost-Efficiency Strategy for BuatEvent.id

Authors

  • Muhammad Supriyadi Nusa Mandiri University
  • Yan Rianto Universitas Nusa Mandiri

DOI:

https://doi.org/10.57152/malcom.v5i3.1929

Keywords:

Artifical Inteligence, Budget Optimization, Data Collection, Machine Learning, Natural Language Processing

Abstract

BuatEvent.id leverages an AI-driven platform for event planning, powered by Gemini.ai—a sophisticated NLP model with an accuracy rate of 92.5%. The system integrates multiple technologies, including PHP, Python, Golang, Flutter, and MySQL, to automate essential processes, achieving a 25% improvement in planning precision. This study aims to evaluate the role of AI in enhancing budget management and corporate event customization. By addressing the inefficiencies of conventional event planning, this platform optimizes workflows, enhances overall productivity, and offers a seamless user experience customized to cater to a wide range of client requirements. The results demonstrate a 92.5% accuracy in processing user queries and a 25% increase in event planning efficiency, highlighting the platform’s ability to deliver cost-effective and personalized solutions. These figures were obtained through internal testing using a dataset of 200 annotated user queries. The platform primarily targets corporate events, including workshops, product launches, and business meetings.For example, the system was successfully deployed during a corporate training event in Jakarta, where it reduced planning time by 30%.

Downloads

Download data is not yet available.

References

Monfort, A., Villagra, N., & Sánchez, J. (2021). "Economic impact of corporate foundations: An event analysis approach." Journal of Business Research, 122, 159-170 DOI: 10.1016/j.jbusres.2020.08.046

Bahri, S., & Ramaditya, M. (2024). "Innovation of the finished banknotes business model changes in Indonesian banknotes printing." Journal of Open Innovation: Technology, Market, and Complexity, 10(3), 100323. DOI:

Han, X., Meng, X., & Zhang, Y. (2025). "Exploiting multiple influence pattern of event organizer for event recommendation." Information Processing & Management, 62(2), 103966. DOI: 10.1016/j.ipm.2024.103966

Wünderlich, N. V., Hogreve, J., Chowdhury, I. N., Fleischer, H., Mousavi, S., Rötzmeier-Keuper, J., & Sousa, R. (2019). "Overcoming vulnerability: Channel design strategies to alleviate vulnerability perceptions in customer journeys." Journal of Business Research. DOI: 10.1016/j.jbusres.2019.07.027

Wu, F., Sorokina, N., & Putra, E. D. (2023). "Customers Satisfaction on Robots, Artificial Intelligence and Service Automation (RAISA) in the Hotel Industry: A Comprehensive Review." Open Journal of Business and Management, 11(3). DOI: 10.4236/ojbm.2023.113069

Silva, F. J. F., Câmara, G. F. M., Vieira, J. A. C., & Santos, C. A. S. M. (2020). "Is the spending behaviour of tourists affected by low-cost carriers' operation? Some empirical evidence." Tourism Management Perspectives, 33, 100630. DOI: 10.1016/j.tmp.2019.100630

Flutter Documentation. Flutter.dev, https://flutter.dev/docs.

The Go Programming Language. Golang.org, https://golang.org/doc/.

PHP: Hypertext Preprocessor. PHP.net, https://www.php.net/docs.php

Python Documentation. Python.org, https://docs.python.org/.

MySQL Reference Manual. MySQL.com, https://dev.mysql.com/doc/.

Ahmed, N., Saha, A. K., Noman, M. A. A., Jim, J. R., Mridha, M. F., & Kabir, M. M. (2024). Deep learning-based natural language processing in human–agent interaction: Applications, advancements and challenges. Natural Language Processing Journal, 9, 100112. DOI: 10.1016/j.nlp.2024.100112

Hardiman, J. P. W., Thio, D. C., Zakiyyah, A. Y., & Meiliana. (2024). AI-powered dialogues and quests generation in role-playing games using Google's Gemini and Sentence BERT framework. Procedia Computer Science, 245, 1111–1119. DOI: 10.1016/j.procs.2024.10.340

Darraz, N., Karabila, I., El-Ansari, A., Alami, N., & El Mallahi, M. (2025). Integrated sentiment analysis with BERT for enhanced hybrid recommendation systems. Expert Systems with Applications, 261, 125533. DOI: 10.1016/j.eswa.2024.125533

Jang, H. (2019). A decision support framework for robust R&D budget allocation using machine learning and optimization. Decision Support Systems, 121, 1–12. DOI: 10.1016/j.dss.2019.03.010

Zhou, J., Chi, Y., Wen, Y., & Gao, K. (2024). TourismNER: A Tourism Named Entity Recognition method based on entity boundary joint prediction. Expert Systems with Applications. DOI: 10.1016/j.iswa.2024.200447

Xu, Y., Meng, J., Zhang, Y., & Koo, J. (2024). Present bias, mental budget constraint, and the payday consumption cycle. China Economic Review, In Press, Journal Pre-proof, 102306. DOI: 10.1016/j.chieco.2024.102306

Zheng, W., Zaman, A., Farooq, F., Althoey, F., Alaskar, A., & Akbar, A. (2023). Sustainable predictive model of concrete utilizing waste ingredient: Individual algorithms with optimized ensemble approaches. Materials Communications, 105901. DOI: 10.1016/j.mtcomm.2023.105901

Mahapatra, B. S., Ghosh, D., Pamucar, D., & Mahapatra, G. S. (2025). Dynamic group decision-making for enterprise resource planning selection using two-tuples Pythagorean fuzzy MOORA approach. Expert Systems with Applications, 263, 125675. DOI: 10.1016/j.eswa.2024.125675

Song, X., Fu, X., Ren, M., Pace, P., & Aloi, G. (2024). Prediction-based data collection of UAV-assisted Maritime Internet of Things. Vehicular Communications, 50, 100854. DOI: 10.1016/j.vehcom.2024.100854

Islam, M. R., Ahmad, A., & Rahman, M. S. (2024). Bangla text normalization for text-to-speech synthesizer using machine learning algorithms. Journal of King Saud University - Computer and Information Sciences, 36(1), 101807. DOI: 10.1016/j.jksuci.2023.101807

Quarto, M., D’Urso, G., & Giardini, C. (2022). Micro-EDM optimization through particle swarm algorithm and artificial neural network. Precision Engineering, 73, 63–70. DOI: 10.1016/j.precisioneng.2021.08.018

Dolha, D. N., & Buchmann, R. A. (2024). Experiments with natural language queries on RDF vs. XML-serialized BPMN diagrams. Procedia Computer Science, 246, 3246–3255. DOI: 10.1016/j.procs.2024.09.315

Downloads

Published

2025-06-19

How to Cite

Supriyadi, M., & Rianto, Y. (2025). Revolutionizing Corporate Event Planning with AI: A Cost-Efficiency Strategy for BuatEvent.id. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 5(3), 746-754. https://doi.org/10.57152/malcom.v5i3.1929