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Abstract

Selecting an appropriate cloud computing service remains a major challenge in web-based application development, as it
directly affects performance, scalability, security, and operational costs. Google Cloud Platform (GCP) offers multiple
computing services, yet empirical comparisons among its core services are still limited. This study aims to evaluate and
compare the performance of Compute Engine, App Engine, and Kubernetes Engine in hosting web-based applications. A
quantitative experimental approach was employed using a Node.js and PostgreSQL-based e-commerce application, tested
under various workload scenarios using Apache JMeter. Performance metrics, including response time, throughput,
latency, scalability, reliability, security, and cost, were analyzed. The results indicate that Compute Engine provides stable
performance for predictable workloads, App Engine delivers low latency with higher operational costs, and Kubernetes
Engine offers the best scalability and resource efficiency. Performance optimization techniques such as caching and CDN
integration further improved API responsiveness. This study concludes that Kubernetes Engine is the most suitable choice
for large-scale and dynamic web applications. Optimal GCP service selection should align with workload characteristics
and organizational requirements.
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1. INTRODUCTION

Digital transformation has driven organizations across various sectors to adopt cloud computing as the
core foundation of modern information technology infrastructure. Cloud computing offers significant
advantages in terms of flexibility, efficient resource utilization, and high scalability compared to traditional on-
premise systems [1]. Among public cloud service providers, Google Cloud Platform (GCP) is widely
recognized for its high performance, robust security mechanisms, and advanced integration of artificial
intelligence services [2], [3]. These strengths position GCP as a compelling platform for the development of
modern web-based applications. However, the optimal utilization of GCP services still requires a
comprehensive understanding of the performance characteristics of its computing offerings.

In the context of web application development, inappropriate selection of cloud services may lead to
several issues, including high latency, performance instability under traffic spikes, and inefficient operational
costs. Although GCP provides multiple computing services such as Compute Engine, App Engine, and
Kubernetes Engine, each service differs in architecture, resource management mechanisms, and cost
implications [4], [5]. A common challenge faced by developers is the lack of empirical guidance in determining
which GCP service best fits specific web application workloads. Therefore, a systematic performance
evaluation of these services is required to support informed cloud architecture decisions.

Quality of Service (QoS) and end-user experience are strongly influenced by a cloud platform’s ability
to handle dynamic workloads. GCP offers container orchestration and automated resource management via
Kubernetes Engine, designed to enhance system efficiency and reliability [6]. Meanwhile, App Engine
provides ease of development through built-in automatic scaling and load balancing, although it has been
reported to incur higher operational costs at certain scales [7]. These differing approaches indicate trade-offs
between manageability, performance, and cost that require deeper analysis.
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Several previous studies have investigated the performance and characteristics of GCP from different
perspectives. Johnson and Lee compared AWS, Azure, and GCP and concluded that GCP demonstrates
superior computational efficiency [1]. Gupta et al. reported that GCP maintains more stable response times for
dynamic applications compared to other cloud providers [8]. Brown, as well as Li and Chandra, highlighted
the advantages of Kubernetes Engine in container orchestration and autoscaling under heavy workloads [6],
[9]. Furthermore, Nasution and Park emphasized that GCP’s Al-driven resource management system enables
real-time workload adaptation [10]. However, most of these studies focus on individual services or inter-
provider comparisons and do not provide a comprehensive evaluation of GCP’s core services within a unified
web application context.

Based on this research gap, this study aims to analyze and compare the performance of three main GCP
services, Compute Engine, App Engine, and Kubernetes Engine, managing web-based applications under
various workload scenarios. The key distinction of this study from previous research lies in its intra-platform
evaluation of GCP services through direct performance testing of scalability, efficiency, and resource
management. The contributions of this research are expected to provide practical recommendations for
developers and organizations in selecting optimal GCP cloud architectures, while also enriching the academic
literature on cloud performance evaluation for web-based applications.

2. MATERIALS AND METHOD

This study employs a quantitative experimental research approach to evaluate and compare the
performance of Google Cloud Platform’s (GCP) core computing services Compute Engine, App Engine, and
Kubernetes Engine in the context of web-based application deployment. The methodology is designed to
address the research gap identified in the introduction, namely the lack of empirical intra-platform performance
comparison among GCP services under varying workload conditions.

2.1. Experimental Setup
A simple web-based e-commerce application was developed using Node.js as the application layer and
PostgreSQL as the database management system. The application simulates common e-commerce transaction
activities, including user requests, product queries, and transactional operations, thereby representing a realistic
workload for a web application. To ensure consistency and fairness in comparison, the same application
architecture and dataset were deployed across all three GCP services.
The application was implemented on:
1. Compute Engine, which provides Infrastructure-as-a-Service (laaS) virtual machines with full control
over operating system and resource configuration.
2. App Engine, a Platform-as-a-Service (PaaS) offering that manages infrastructure provisioning,
automatic scaling, and load balancing.
3. Kubernetes Engine, which delivers container-based orchestration using Docker and is designed for
scalable, distributed application environments.

2.2. Performance Testing and Load Scenarios

Performance evaluation was conducted using Apache JMeter as the load testing tool. Two primary load
scenarios were defined to reflect different usage conditions: a low-load scenario with 100 concurrent users and
a high-load scenario with 5,000 concurrent users. Additionally, scalability testing was conducted by gradually
increasing the number of concurrent users from 100 to 10,000 to observe the system's behavior under sustained
growth. These scenarios were selected to assess each service’s ability to maintain performance stability and
responsiveness under both moderate and extreme workloads, as discussed in the introduction.

2.3. Evaluation Metrics

Several key performance metrics were measured during the experiments, including average response
time, system throughput, CPU utilization, and memory usage. These metrics provide quantitative indicators of
Quality of Service (QoS) and resource efficiency for each GCP service. Scalability was evaluated based on
changes in performance metrics as the number of concurrent users increased, highlighting each platform’s
ability to dynamically allocate resources.

2.4. Security Considerations

In addition to performance and scalability, this study also considers security aspects relevant to
production environments. Security analysis was conducted by examining GCP’s built-in security features
applied to each deployment, including Identity and Access Management (IAM) configurations and data
encryption policies. Although no penetration testing was performed, this analysis provides insight into the
baseline security capabilities available across the evaluated services.
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2.5. Application Performance

Results show that Compute Engine provides stable performance across all tested load levels, achieving
an average response time of 120 ms and a throughput of approximately 850 requests per second. This service
is particularly suitable for applications with steady workloads and specific system configuration requirements.
App Engine exhibits faster response times under moderate workloads, with an average of 95 ms. However, the
use of automatic scaling leads to operational costs that are up to 30% higher, especially during traffic
fluctuations [15]. Kubernetes Engine achieves the best overall results in terms of resource efficiency and
scalability, with only a 10% increase in response time when subjected to a fivefold workload increase. These
findings are consistent with previous studies highlighting the efficiency of container-based architectures in
handling dynamic workloads [6], [16].

2.6. Scalability

In scalability testing, Kubernetes Engine successfully accommodated up to 10,000 concurrent users
without significant performance degradation. This capability is primarily enabled by the Horizontal Pod
Autoscaling (HPA) mechanism, which automatically provisions additional pods in response to workload
demand. Computer Engine demonstrated linear scalability but required manual resource adjustment, while App
Engine scaled automatically at the expense of higher resource consumption. These observations align with
prior research by Li and Chandra, which demonstrated Kubernetes’s high adaptability to sudden traffic surges
and workload variability [9].

2.7.  Security Analysis

All evaluated GCP services exhibit strong built-in security features. GCP employs AES-256 encryption
for data at rest and supports end-to-end encryption for inter-service communication. ldentity and Access
Management (IAM) enables role-based access control, reducing the risk of access violations by approximately
35% compared to traditional perimeter-based security models [3]. Additionally, GCP complies with
international standards, including 1SO 27017, SOC 2, and GDPR, making it suitable for public-sector and
financial applications that require strict regulatory compliance [19].

2.8. Cost Analysis

From an economic perspective, Compute Engine is the most cost-efficient option for stable workloads
due to the availability of committed-use discounts. App Engine incurs the highest operational cost due to its
automated scaling behavior, which can over-provision resources during demand spikes. Kubernetes Engine
offers a balance between performance and cost efficiency through cluster autoscaling, enabling dynamic
resource allocation based on actual demand. Previous studies indicate that Kubernetes-based deployments can
reduce total operational costs by up to 18% compared to traditional virtual machine infrastructures [5], [18].

2.9. General Discussion

Overall, Google Cloud Platform proves to be a robust and flexible platform for deploying web-based
applications. The combination of Infrastructure-as-a-Service (laaS) and Platform-as-a-Service (PaaS) models
allows organizations to select deployment strategies that best match their workload characteristics. GCP’s
primary advantage over other cloud providers lies in its integration with artificial intelligence services and
BigQuery, which significantly enhance data processing and analytics capabilities [7], [8]. Nevertheless,
challenges remain in terms of vendor lock-in and initial deployment complexity. Recent studies recommend
adopting multi-cloud architectures to mitigate dependency risks and improve fault tolerance [10], [14].

3. RESULTS AND DISCUSSION

Google Cloud Platform demonstrates excellent performance, scalability, and security in hosting web-
based applications. Although its operational costs are higher compared to some cloud providers, its robust
architecture and automation capabilities justify the additional expense. App Engine and Kubernetes Engine are
particularly suited for dynamic applications requiring elasticity and reliability, while Compute Engine remains
a stable choice for predictable workloads.

This study concludes that Google Cloud Platform demonstrates superior performance, scalability, and
security in implementing web-based applications. Compute Engine is suitable for predictable workloads, App
Engine is ideal for applications requiring automatic scaling, and Kubernetes Engine is the most appropriate
choice for large-scale systems due to its high scalability and resource efficiency. GCP’s strong security
framework and international compliance certifications further support its suitability for enterprise and public-
sector systems. Future research should focus on long-term cost optimization and performance evaluation in
multi-cloud environments.

MALCOM - Vol. 6 Iss. 1 January 2026, pp: 205-211 207



MALCOM-06(01): 205-211

3.1. API Performance Testing Results
3.1.1. Throughput Analysis

Throughput represents the number of successful API requests processed per unit of time, measured in
requests per second (RPS). Under normal load conditions (100 concurrent users), the system achieved an
average throughput of 820 requests per second, indicating efficient utilization of network and computational
resources. Under high-load conditions (5,000 concurrent users), throughput decreased slightly to 780 requests
per second, resulting in approximately 4.8% performance degradation. Throughput degradation below 10%
under stress conditions indicates a stable and scalable system. These results suggest that GCP’s managed load
balancing and automatic scaling mechanisms effectively maintain consistent throughput during heavy network
traffic [15].

3.1.2. Latency Evaluation

Latency measures the delay between the transmission of a request and the reception of a response,
encompassing network, server-side, and client-side latency components. In this experiment, the average end-
to-end latency under normal load was 145 ms, increasing to 210 ms under high load.

The relatively moderate increase of 30-40% demonstrates efficient request routing and minimal
congestion within GCP’s infrastructure. Previous studies confirm that distributed cloud environments with
edge nodes, such as GCP’s Cloud CDN, can reduce latency by up to 35% compared to centralized architectures,
which aligns with the observed results [16].

3.1.3. Correlation Between Response Time, Throughput, and Latency

A Pearson’s correlation analysis was conducted to evaluate the interactions among response time,
throughput, and latency. The correlation coefficient between response time and throughput was —0.87,
indicating a strong negative relationship. This suggests that increasing throughput improves response time up
to an optimal point, after which resource contention degrades performance.

Latency exhibited a strong positive correlation with response time (r = 0.79), indicating that higher
network latency directly contributes to longer response times. These findings identify network latency as the
dominant factor influencing response performance in distributed API architectures. The Matrix Correlation
Between Response Time, Throughput, and Latency is presented in Table 1.

Table 1. Matrix Correlation Between Response Time, Throughput, and Latency

Aspect Description
Material Title Correlation Between Response Time, Throughput, and Latency
To understand the relationship among the three key performance metrics (response
time, throughput, and latency) under varying workloads.
Pearson correlation analysis was used to measure the relationship between
performance variables.

Purpose of Analysis

Analysis Method

Variables Analyzed (1) Response Time; (2) Throughput; (3) Latency
Correlation Result: The correlation coefficient r = —0.87 indicates a strong negative relationship.
Response Time vs - Meaning: as throughput increases, response time decreases up to an optimal point
Throughput before performance degradation occurs due to resource contention.
Correlation Result: The correlation coefficient r = 0.79 indicates a strong positive relationship.
Response Time vs Latency - Meaning: higher network latency leads to higher overall response times.
1. Increasing throughput can improve response time up to a certain limit.
Interpretation 2. Latency is identified as the dominant factor influencing response performance in

distributed API architectures.
Network latency is identified as the main factor affecting system response

Main Conclusion R .
performance in distributed environments.

3.1.4. Error Rate and Reliability

Reliability was measured using the API error rate, defined as the proportion of failed requests relative
to total requests. Across all testing scenarios, the error rate remained below 0.5%, demonstrating the robustness
of GCP’s fault-tolerance mechanisms. Cloud-based systems with error rates below 1% are generally considered
reliable for enterprise-scale deployments [3].

3.2.  Optimization Implementation
To further enhance the performance of the Google Cloud Platform (GCP) web application APIs, several
optimization strategies were designed, implemented, and tested. These strategies aimed to reduce latency,
improve throughput, and enhance the efficiency of resource utilization.
1. Caching
Caching mechanisms store frequently accessed data in temporary memory, reducing the need to
repeatedly retrieve identical information from the origin server. The implementation leveraged HTTP
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headers, such as Cache-Control and ETag, to ensure that responses were stored in local or intermediary
caches. This significantly improved response efficiency by minimizing the number of round-trip
requests. Experimental results demonstrated that caching reduced the average response time from 120
ms to 85 ms for repeated requests, aligning with findings from Rahman & Lee (2024), who reported
that cache-enabled APIs can improve response performance by up to 30% [17].

2. Content Delivery Network (CDN)
A CDN was utilized to replicate static and dynamic data across geographically distributed edge servers
closer to end users. This study implemented Google Cloud CDN integrated with Cloud Storage to
accelerate data access and minimize cross-region latency. The optimization reduced the average
network latency from 60 ms to 40 ms, particularly benefiting users located in remote or high-latency
regions. CDN integration can reduce API response latency by 25-40% through localized edge routing
and intelligent cache invalidation policies [16].

3. Batch Processing
Batch processing combines multiple APl requests into a single grouped transmission, reducing
connection overhead and improving network efficiency. The implementation used Google Cloud SDK’s
batch request feature to process bulk data uploads and update transactions simultaneously. Results
showed a throughput improvement from 320 MB/s to 450 MB/s, indicating a 40% gain in transmission
performance. which emphasizes that batching improves data transmission efficiency by reducing
handshake and TCP congestion delays [20].

4. Request Header Optimization
This technique improves API performance by refining metadata exchange and avoiding unnecessary
data retrieval. The If-Modified-Since and If-None-Match headers were used to ensure that only updated
or modified data were transmitted. Implementation of header optimization reduced redundant payloads,
resulting in a 25% reduction in total response time for frequently updated datasets. Similar optimizations
have been noted by Zhou & Tan (2024), who reported significant efficiency improvements when HTTP
conditional headers were applied to cloud-based APIs [20].

The optimization results demonstrate that combining caching, CDN distribution, batch processing, and
request header refinement significantly enhances API performance in GCP environments. Each strategy
addresses distinct performance dimensions: latency, throughput, and bandwidth efficiency, resulting in a
synergistic effect on overall system responsiveness.

Caching proved most effective for repetitive or frequently accessed API calls, while CDN integration
minimized geographic latency and improved the user experience for distributed clients. Batch processing
reduced request overhead, particularly in data-intensive operations such as bulk file uploads. Finally, header
optimization streamlined communication efficiency, reducing redundant network traffic.

These outcomes corroborate previous findings by Zhao et al. (2024) and Nasution & Park (2024), who
identified data caching and distributed content routing as core enablers of high-performance API architectures.
In summary, the adoption of layered optimization combining network, application, and protocol-level strategies
enabled the GCP API to maintain superior stability and performance even under high-demand workloads [16].

3.3.  Research Discussion

This discussion section interprets the experimental findings, explains the underlying causes of the
observed performance, compares the results with previous studies, and highlights the research's implications,
strengths, and limitations.

3.3.1. Interpretation of Performance and Scalability Results

The observed performance stability of Compute Engine under heavy workloads can be attributed to its
Infrastructure-as-a-Service (laaS) model, which provides dedicated virtual machine resources with predictable
performance characteristics. This explains why Compute Engine maintains consistent response times for steady
workloads but requires manual intervention when scaling beyond predefined capacity limits. Similar behavior
has been theoretically associated with VM-based architectures that prioritize control over elasticity [1].

App Engine’s superior response time under moderate loads is primarily driven by its fully managed
Platform-as-a-Service (PaaS) architecture, which abstracts infrastructure management and aggressively
provisions resources during traffic fluctuations. However, the higher operational cost observed in this study
reflects the trade-off between developer convenience and cost efficiency, as also reported in enterprise cost
evaluations [15].

Kubernetes Engine demonstrated the best scalability and resource efficiency due to its container
orchestration model and Horizontal Pod Autoscaling (HPA). This mechanism dynamically allocates resources
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based on real-time workload demand, which explains the platform’s ability to handle a 500% increase in
concurrent users with minimal degradation in response time. These findings are consistent with container
orchestration theory, which emphasizes fine-grained resource allocation and rapid scaling [6], [16].

3.3.2. Comparison with Previous Studies

The results of this study align closely with previous inter-cloud and intra-cloud performance analyses.
Gupta et al. reported that GCP maintains more stable response times for dynamic applications compared to
other cloud providers, which is confirmed by the scalability and latency results observed in this research [8].
Similarly, Li and Chandra demonstrated that Kubernetes-based autoscaling significantly improves system
adaptability under heavy loads, supporting the scalability behavior identified in this study [9].

Furthermore, the strong negative correlation between response time and throughput (r = —0.87)
reinforces prior findings that effective load balancing and autoscaling mechanisms can optimize system
responsiveness up to a saturation point [16]. The identification of network latency as the dominant factor
influencing response time is also consistent with distributed system theory, which highlights communication
overhead as a critical bottleneck in cloud-based architectures [17].

3.3.3. Security and Cost Implications

From a security perspective, the results confirm that GCP’s integrated security mechanisms, such as
IAM, encryption, and compliance certifications, provide a robust baseline suitable for enterprise and public-
sector environments. This supports earlier findings emphasizing the importance of governance and compliance
in modern cloud infrastructures [19].

Cost analysis reveals a clear trade-off between automation and expenditure. While App Engine
simplifies deployment and scaling, its higher cost may limit its suitability for cost-sensitive applications. In
contrast, Kubernetes Engine offers a balanced cost-performance ratio, confirming previous studies that
reported cost reductions of up to 18% when adopting container-based architectures [18]. These findings imply
that organizations must align service selection with workload predictability and budget constraints.

3.3.4. Implications for Practitioners and System Designers

The findings of this study have practical implications for cloud architects and developers. For
applications with predictable workloads and strict configuration requirements, Compute Engine remains an
effective choice. App Engine is well-suited for rapid development and variable traffic scenarios where
operational simplicity is a top priority. Kubernetes Engine is the most suitable option for large-scale, dynamic,
and mission-critical systems that require high scalability and efficient resource utilization.

Additionally, the performance gains achieved through optimization techniques such as caching, CDN
integration, and batch processing demonstrate that application-level and network-level optimizations play a
crucial role in maximizing cloud performance. These results highlight the importance of adopting a layered
optimization strategy rather than relying solely on infrastructure capabilities [20].

3.3.5. Limitations and Future Research Directions

Despite its contributions, this study has several limitations. First, the experiments were conducted using
a single web-based e-commerce application, which may not fully represent other workload types such as
machine learning inference or real-time analytics. Second, the evaluation was limited to a single cloud provider
and did not include cross-cloud fault tolerance or multi-region deployment scenarios.

Future research should extend this work by incorporating long-term cost analysis, evaluating machine
learning and data-intensive workloads, and conducting performance comparisons in multi-cloud environments.
Recent studies suggest that multi-cloud architectures can reduce vendor lock-in risks and improve system
resilience, making them a promising direction for further investigation [10], [14].

4. CONCLUSION

This study evaluated the performance, scalability, security, and cost characteristics of three primary
Google Cloud Platform (GCP) services Compute Engine, App Engine, and Kubernetes Engine through
experimental testing using a web-based application. The results demonstrate that each service exhibits distinct
strengths depending on workload characteristics. Compute Engine provides stable and predictable performance
for steady workloads. App Engine offers low latency and ease of management through automatic scaling, albeit
at a higher operational cost. Kubernetes Engine delivers the best balance of scalability and resource efficiency
for large-scale and dynamic applications. In addition, GCP’s integrated security mechanisms, including IAM
and encryption, along with compliance with international standards, confirm its suitability for enterprise and
public-sector environments.

Furthermore, the study demonstrates that performance optimization techniques, including caching,
CDN integration, batch processing, and request header optimization, significantly enhance API responsiveness
and throughput. Correlation analysis reveals that network latency is the primary factor influencing response
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time in distributed cloud environments, underscoring the importance of network-level optimization in
conjunction with infrastructure selection. Despite higher operational costs, GCP provides long-term value
through automation, scalability, and discount mechanisms. Future research should extend this work by
examining long-term cost efficiency, evaluating additional workload types such as machine learning and data
analytics, and conducting comparative studies in multi-cloud and multi-region deployment scenarios to further
improve cloud architecture decision-making.
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