
Institut Riset dan Publikasi Indonesia (IRPI)

MALCOM: Indonesian Journal of Machine Learning and Computer Science

Journal Homepage: https://journal.irpi.or.id/index.php/malcom

Vol. 6 Iss. 1 January 2026, pp: 205-211

ISSN(P): 2797-2313 | ISSN(E): 2775-8575

 205

DOI: https://doi.org/10.57152/malcom.v6i1.2351

 Performance Analysis of Google Cloud Platform for

Web-Based Applications

Amiruddin. A1*, Rahmawati2, Nurhaedar3, Musa4

1,3,4Program Studi Informatika, Politeknik Lembaga Pendidikan dan

Pengembangan Profesi Indonesia, Makassar, Indonesia
2Program Studi Informatika, Universitas Almarisah Madani, Indonesia

E-Mail: 1amiruddinardinmks@gmail.com, 2univeralrahmawati@gmail.com,
3nurhaedarn00@gmail.com, 4musaandijamal9@gmail.com

Received Oct 30th 2025; Revised Dec 30th 2025; Accepted Jan 10th 2026; Available Online Jan 17th 2026

Corresponding Author: Amiruddin. A
Copyright © 2025 by Authors, Published by Institut Riset dan Publikasi Indonesia (IRPI)

Abstract

Selecting an appropriate cloud computing service remains a major challenge in web-based application development, as it

directly affects performance, scalability, security, and operational costs. Google Cloud Platform (GCP) offers multiple

computing services, yet empirical comparisons among its core services are still limited. This study aims to evaluate and

compare the performance of Compute Engine, App Engine, and Kubernetes Engine in hosting web-based applications. A

quantitative experimental approach was employed using a Node.js and PostgreSQL-based e-commerce application, tested

under various workload scenarios using Apache JMeter. Performance metrics, including response time, throughput,

latency, scalability, reliability, security, and cost, were analyzed. The results indicate that Compute Engine provides stable

performance for predictable workloads, App Engine delivers low latency with higher operational costs, and Kubernetes

Engine offers the best scalability and resource efficiency. Performance optimization techniques such as caching and CDN

integration further improved API responsiveness. This study concludes that Kubernetes Engine is the most suitable choice

for large-scale and dynamic web applications. Optimal GCP service selection should align with workload characteristics

and organizational requirements.

Keywords: Cloud Computing, Google Cloud Platform, Performance, Scalability, Web Application

1. INTRODUCTION

Digital transformation has driven organizations across various sectors to adopt cloud computing as the

core foundation of modern information technology infrastructure. Cloud computing offers significant

advantages in terms of flexibility, efficient resource utilization, and high scalability compared to traditional on-

premise systems [1]. Among public cloud service providers, Google Cloud Platform (GCP) is widely

recognized for its high performance, robust security mechanisms, and advanced integration of artificial

intelligence services [2], [3]. These strengths position GCP as a compelling platform for the development of

modern web-based applications. However, the optimal utilization of GCP services still requires a

comprehensive understanding of the performance characteristics of its computing offerings.

In the context of web application development, inappropriate selection of cloud services may lead to

several issues, including high latency, performance instability under traffic spikes, and inefficient operational

costs. Although GCP provides multiple computing services such as Compute Engine, App Engine, and

Kubernetes Engine, each service differs in architecture, resource management mechanisms, and cost

implications [4], [5]. A common challenge faced by developers is the lack of empirical guidance in determining

which GCP service best fits specific web application workloads. Therefore, a systematic performance

evaluation of these services is required to support informed cloud architecture decisions.

Quality of Service (QoS) and end-user experience are strongly influenced by a cloud platform’s ability

to handle dynamic workloads. GCP offers container orchestration and automated resource management via

Kubernetes Engine, designed to enhance system efficiency and reliability [6]. Meanwhile, App Engine

provides ease of development through built-in automatic scaling and load balancing, although it has been

reported to incur higher operational costs at certain scales [7]. These differing approaches indicate trade-offs

between manageability, performance, and cost that require deeper analysis.

https://creativecommons.org/licenses/by-sa/4.0/

 MALCOM-06(01): 205-211

 206 Performance Analysis of Google Cloud Platform... (Amiruddin et al, 2026)

Several previous studies have investigated the performance and characteristics of GCP from different

perspectives. Johnson and Lee compared AWS, Azure, and GCP and concluded that GCP demonstrates

superior computational efficiency [1]. Gupta et al. reported that GCP maintains more stable response times for

dynamic applications compared to other cloud providers [8]. Brown, as well as Li and Chandra, highlighted

the advantages of Kubernetes Engine in container orchestration and autoscaling under heavy workloads [6],

[9]. Furthermore, Nasution and Park emphasized that GCP’s AI-driven resource management system enables

real-time workload adaptation [10]. However, most of these studies focus on individual services or inter-

provider comparisons and do not provide a comprehensive evaluation of GCP’s core services within a unified

web application context.

Based on this research gap, this study aims to analyze and compare the performance of three main GCP

services, Compute Engine, App Engine, and Kubernetes Engine, managing web-based applications under

various workload scenarios. The key distinction of this study from previous research lies in its intra-platform

evaluation of GCP services through direct performance testing of scalability, efficiency, and resource

management. The contributions of this research are expected to provide practical recommendations for

developers and organizations in selecting optimal GCP cloud architectures, while also enriching the academic

literature on cloud performance evaluation for web-based applications.

2. MATERIALS AND METHOD

This study employs a quantitative experimental research approach to evaluate and compare the

performance of Google Cloud Platform’s (GCP) core computing services Compute Engine, App Engine, and

Kubernetes Engine in the context of web-based application deployment. The methodology is designed to

address the research gap identified in the introduction, namely the lack of empirical intra-platform performance

comparison among GCP services under varying workload conditions.

2.1. Experimental Setup

A simple web-based e-commerce application was developed using Node.js as the application layer and

PostgreSQL as the database management system. The application simulates common e-commerce transaction

activities, including user requests, product queries, and transactional operations, thereby representing a realistic

workload for a web application. To ensure consistency and fairness in comparison, the same application

architecture and dataset were deployed across all three GCP services.

The application was implemented on:

1. Compute Engine, which provides Infrastructure-as-a-Service (IaaS) virtual machines with full control

over operating system and resource configuration.

2. App Engine, a Platform-as-a-Service (PaaS) offering that manages infrastructure provisioning,

automatic scaling, and load balancing.

3. Kubernetes Engine, which delivers container-based orchestration using Docker and is designed for

scalable, distributed application environments.

2.2. Performance Testing and Load Scenarios

Performance evaluation was conducted using Apache JMeter as the load testing tool. Two primary load

scenarios were defined to reflect different usage conditions: a low-load scenario with 100 concurrent users and

a high-load scenario with 5,000 concurrent users. Additionally, scalability testing was conducted by gradually

increasing the number of concurrent users from 100 to 10,000 to observe the system's behavior under sustained

growth. These scenarios were selected to assess each service’s ability to maintain performance stability and

responsiveness under both moderate and extreme workloads, as discussed in the introduction.

2.3. Evaluation Metrics

Several key performance metrics were measured during the experiments, including average response

time, system throughput, CPU utilization, and memory usage. These metrics provide quantitative indicators of

Quality of Service (QoS) and resource efficiency for each GCP service. Scalability was evaluated based on

changes in performance metrics as the number of concurrent users increased, highlighting each platform’s

ability to dynamically allocate resources.

2.4. Security Considerations

In addition to performance and scalability, this study also considers security aspects relevant to

production environments. Security analysis was conducted by examining GCP’s built-in security features

applied to each deployment, including Identity and Access Management (IAM) configurations and data

encryption policies. Although no penetration testing was performed, this analysis provides insight into the

baseline security capabilities available across the evaluated services.

ISSN(P): 2797-2313 | ISSN(E): 2775-8575

207

MALCOM - Vol. 6 Iss. 1 January 2026, pp: 205-211

2.5. Application Performance

Results show that Compute Engine provides stable performance across all tested load levels, achieving

an average response time of 120 ms and a throughput of approximately 850 requests per second. This service

is particularly suitable for applications with steady workloads and specific system configuration requirements.

App Engine exhibits faster response times under moderate workloads, with an average of 95 ms. However, the

use of automatic scaling leads to operational costs that are up to 30% higher, especially during traffic

fluctuations [15]. Kubernetes Engine achieves the best overall results in terms of resource efficiency and

scalability, with only a 10% increase in response time when subjected to a fivefold workload increase. These

findings are consistent with previous studies highlighting the efficiency of container-based architectures in

handling dynamic workloads [6], [16].

2.6. Scalability

In scalability testing, Kubernetes Engine successfully accommodated up to 10,000 concurrent users

without significant performance degradation. This capability is primarily enabled by the Horizontal Pod

Autoscaling (HPA) mechanism, which automatically provisions additional pods in response to workload

demand. Computer Engine demonstrated linear scalability but required manual resource adjustment, while App

Engine scaled automatically at the expense of higher resource consumption. These observations align with

prior research by Li and Chandra, which demonstrated Kubernetes’s high adaptability to sudden traffic surges

and workload variability [9].

2.7. Security Analysis

All evaluated GCP services exhibit strong built-in security features. GCP employs AES-256 encryption

for data at rest and supports end-to-end encryption for inter-service communication. Identity and Access

Management (IAM) enables role-based access control, reducing the risk of access violations by approximately

35% compared to traditional perimeter-based security models [3]. Additionally, GCP complies with

international standards, including ISO 27017, SOC 2, and GDPR, making it suitable for public-sector and

financial applications that require strict regulatory compliance [19].

2.8. Cost Analysis

From an economic perspective, Compute Engine is the most cost-efficient option for stable workloads

due to the availability of committed-use discounts. App Engine incurs the highest operational cost due to its

automated scaling behavior, which can over-provision resources during demand spikes. Kubernetes Engine

offers a balance between performance and cost efficiency through cluster autoscaling, enabling dynamic

resource allocation based on actual demand. Previous studies indicate that Kubernetes-based deployments can

reduce total operational costs by up to 18% compared to traditional virtual machine infrastructures [5], [18].

2.9. General Discussion

Overall, Google Cloud Platform proves to be a robust and flexible platform for deploying web-based

applications. The combination of Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) models

allows organizations to select deployment strategies that best match their workload characteristics. GCP’s

primary advantage over other cloud providers lies in its integration with artificial intelligence services and

BigQuery, which significantly enhance data processing and analytics capabilities [7], [8]. Nevertheless,

challenges remain in terms of vendor lock-in and initial deployment complexity. Recent studies recommend

adopting multi-cloud architectures to mitigate dependency risks and improve fault tolerance [10], [14].

3. RESULTS AND DISCUSSION

Google Cloud Platform demonstrates excellent performance, scalability, and security in hosting web-

based applications. Although its operational costs are higher compared to some cloud providers, its robust

architecture and automation capabilities justify the additional expense. App Engine and Kubernetes Engine are

particularly suited for dynamic applications requiring elasticity and reliability, while Compute Engine remains

a stable choice for predictable workloads.

This study concludes that Google Cloud Platform demonstrates superior performance, scalability, and

security in implementing web-based applications. Compute Engine is suitable for predictable workloads, App

Engine is ideal for applications requiring automatic scaling, and Kubernetes Engine is the most appropriate

choice for large-scale systems due to its high scalability and resource efficiency. GCP’s strong security

framework and international compliance certifications further support its suitability for enterprise and public-

sector systems. Future research should focus on long-term cost optimization and performance evaluation in

multi-cloud environments.

 MALCOM-06(01): 205-211

 208 Performance Analysis of Google Cloud Platform... (Amiruddin et al, 2026)

3.1. API Performance Testing Results

3.1.1. Throughput Analysis

Throughput represents the number of successful API requests processed per unit of time, measured in

requests per second (RPS). Under normal load conditions (100 concurrent users), the system achieved an

average throughput of 820 requests per second, indicating efficient utilization of network and computational

resources. Under high-load conditions (5,000 concurrent users), throughput decreased slightly to 780 requests

per second, resulting in approximately 4.8% performance degradation. Throughput degradation below 10%

under stress conditions indicates a stable and scalable system. These results suggest that GCP’s managed load

balancing and automatic scaling mechanisms effectively maintain consistent throughput during heavy network

traffic [15].

3.1.2. Latency Evaluation

Latency measures the delay between the transmission of a request and the reception of a response,

encompassing network, server-side, and client-side latency components. In this experiment, the average end-

to-end latency under normal load was 145 ms, increasing to 210 ms under high load.

The relatively moderate increase of 30–40% demonstrates efficient request routing and minimal

congestion within GCP’s infrastructure. Previous studies confirm that distributed cloud environments with

edge nodes, such as GCP’s Cloud CDN, can reduce latency by up to 35% compared to centralized architectures,

which aligns with the observed results [16].

3.1.3. Correlation Between Response Time, Throughput, and Latency

A Pearson’s correlation analysis was conducted to evaluate the interactions among response time,

throughput, and latency. The correlation coefficient between response time and throughput was −0.87,

indicating a strong negative relationship. This suggests that increasing throughput improves response time up

to an optimal point, after which resource contention degrades performance.

Latency exhibited a strong positive correlation with response time (r = 0.79), indicating that higher

network latency directly contributes to longer response times. These findings identify network latency as the

dominant factor influencing response performance in distributed API architectures. The Matrix Correlation

Between Response Time, Throughput, and Latency is presented in Table 1.

Table 1. Matrix Correlation Between Response Time, Throughput, and Latency

Aspect Description

Material Title Correlation Between Response Time, Throughput, and Latency

Purpose of Analysis
To understand the relationship among the three key performance metrics (response

time, throughput, and latency) under varying workloads.

Analysis Method
Pearson correlation analysis was used to measure the relationship between

performance variables.

Variables Analyzed (1) Response Time; (2) Throughput; (3) Latency

Correlation Result:

Response Time vs

Throughput

The correlation coefficient r = −0.87 indicates a strong negative relationship.

- Meaning: as throughput increases, response time decreases up to an optimal point

before performance degradation occurs due to resource contention.

Correlation Result:

Response Time vs Latency

The correlation coefficient r = 0.79 indicates a strong positive relationship.

- Meaning: higher network latency leads to higher overall response times.

Interpretation

1. Increasing throughput can improve response time up to a certain limit.

2. Latency is identified as the dominant factor influencing response performance in

distributed API architectures.

Main Conclusion
Network latency is identified as the main factor affecting system response

performance in distributed environments.

3.1.4. Error Rate and Reliability

Reliability was measured using the API error rate, defined as the proportion of failed requests relative

to total requests. Across all testing scenarios, the error rate remained below 0.5%, demonstrating the robustness

of GCP’s fault-tolerance mechanisms. Cloud-based systems with error rates below 1% are generally considered

reliable for enterprise-scale deployments [3].

3.2. Optimization Implementation

To further enhance the performance of the Google Cloud Platform (GCP) web application APIs, several

optimization strategies were designed, implemented, and tested. These strategies aimed to reduce latency,

improve throughput, and enhance the efficiency of resource utilization.

1. Caching

Caching mechanisms store frequently accessed data in temporary memory, reducing the need to

repeatedly retrieve identical information from the origin server. The implementation leveraged HTTP

ISSN(P): 2797-2313 | ISSN(E): 2775-8575

209

MALCOM - Vol. 6 Iss. 1 January 2026, pp: 205-211

headers, such as Cache-Control and ETag, to ensure that responses were stored in local or intermediary

caches. This significantly improved response efficiency by minimizing the number of round-trip

requests. Experimental results demonstrated that caching reduced the average response time from 120

ms to 85 ms for repeated requests, aligning with findings from Rahman & Lee (2024), who reported

that cache-enabled APIs can improve response performance by up to 30% [17].

2. Content Delivery Network (CDN)

A CDN was utilized to replicate static and dynamic data across geographically distributed edge servers

closer to end users. This study implemented Google Cloud CDN integrated with Cloud Storage to

accelerate data access and minimize cross-region latency. The optimization reduced the average

network latency from 60 ms to 40 ms, particularly benefiting users located in remote or high-latency

regions. CDN integration can reduce API response latency by 25–40% through localized edge routing

and intelligent cache invalidation policies [16].

3. Batch Processing

Batch processing combines multiple API requests into a single grouped transmission, reducing

connection overhead and improving network efficiency. The implementation used Google Cloud SDK’s

batch request feature to process bulk data uploads and update transactions simultaneously. Results

showed a throughput improvement from 320 MB/s to 450 MB/s, indicating a 40% gain in transmission

performance. which emphasizes that batching improves data transmission efficiency by reducing

handshake and TCP congestion delays [20].

4. Request Header Optimization

This technique improves API performance by refining metadata exchange and avoiding unnecessary

data retrieval. The If-Modified-Since and If-None-Match headers were used to ensure that only updated

or modified data were transmitted. Implementation of header optimization reduced redundant payloads,

resulting in a 25% reduction in total response time for frequently updated datasets. Similar optimizations

have been noted by Zhou & Tan (2024), who reported significant efficiency improvements when HTTP

conditional headers were applied to cloud-based APIs [20].

The optimization results demonstrate that combining caching, CDN distribution, batch processing, and

request header refinement significantly enhances API performance in GCP environments. Each strategy

addresses distinct performance dimensions: latency, throughput, and bandwidth efficiency, resulting in a

synergistic effect on overall system responsiveness.

Caching proved most effective for repetitive or frequently accessed API calls, while CDN integration

minimized geographic latency and improved the user experience for distributed clients. Batch processing

reduced request overhead, particularly in data-intensive operations such as bulk file uploads. Finally, header

optimization streamlined communication efficiency, reducing redundant network traffic.

These outcomes corroborate previous findings by Zhao et al. (2024) and Nasution & Park (2024), who

identified data caching and distributed content routing as core enablers of high-performance API architectures.

In summary, the adoption of layered optimization combining network, application, and protocol-level strategies

enabled the GCP API to maintain superior stability and performance even under high-demand workloads [16].

3.3. Research Discussion

This discussion section interprets the experimental findings, explains the underlying causes of the

observed performance, compares the results with previous studies, and highlights the research's implications,

strengths, and limitations.

3.3.1. Interpretation of Performance and Scalability Results

The observed performance stability of Compute Engine under heavy workloads can be attributed to its

Infrastructure-as-a-Service (IaaS) model, which provides dedicated virtual machine resources with predictable

performance characteristics. This explains why Compute Engine maintains consistent response times for steady

workloads but requires manual intervention when scaling beyond predefined capacity limits. Similar behavior

has been theoretically associated with VM-based architectures that prioritize control over elasticity [1].

App Engine’s superior response time under moderate loads is primarily driven by its fully managed

Platform-as-a-Service (PaaS) architecture, which abstracts infrastructure management and aggressively

provisions resources during traffic fluctuations. However, the higher operational cost observed in this study

reflects the trade-off between developer convenience and cost efficiency, as also reported in enterprise cost

evaluations [15].

Kubernetes Engine demonstrated the best scalability and resource efficiency due to its container

orchestration model and Horizontal Pod Autoscaling (HPA). This mechanism dynamically allocates resources

 MALCOM-06(01): 205-211

 210 Performance Analysis of Google Cloud Platform... (Amiruddin et al, 2026)

based on real-time workload demand, which explains the platform’s ability to handle a 500% increase in

concurrent users with minimal degradation in response time. These findings are consistent with container

orchestration theory, which emphasizes fine-grained resource allocation and rapid scaling [6], [16].

3.3.2. Comparison with Previous Studies

The results of this study align closely with previous inter-cloud and intra-cloud performance analyses.

Gupta et al. reported that GCP maintains more stable response times for dynamic applications compared to

other cloud providers, which is confirmed by the scalability and latency results observed in this research [8].

Similarly, Li and Chandra demonstrated that Kubernetes-based autoscaling significantly improves system

adaptability under heavy loads, supporting the scalability behavior identified in this study [9].

Furthermore, the strong negative correlation between response time and throughput (r = −0.87)

reinforces prior findings that effective load balancing and autoscaling mechanisms can optimize system

responsiveness up to a saturation point [16]. The identification of network latency as the dominant factor

influencing response time is also consistent with distributed system theory, which highlights communication

overhead as a critical bottleneck in cloud-based architectures [17].

3.3.3. Security and Cost Implications

From a security perspective, the results confirm that GCP’s integrated security mechanisms, such as

IAM, encryption, and compliance certifications, provide a robust baseline suitable for enterprise and public-

sector environments. This supports earlier findings emphasizing the importance of governance and compliance

in modern cloud infrastructures [19].

Cost analysis reveals a clear trade-off between automation and expenditure. While App Engine

simplifies deployment and scaling, its higher cost may limit its suitability for cost-sensitive applications. In

contrast, Kubernetes Engine offers a balanced cost-performance ratio, confirming previous studies that

reported cost reductions of up to 18% when adopting container-based architectures [18]. These findings imply

that organizations must align service selection with workload predictability and budget constraints.

3.3.4. Implications for Practitioners and System Designers

The findings of this study have practical implications for cloud architects and developers. For

applications with predictable workloads and strict configuration requirements, Compute Engine remains an

effective choice. App Engine is well-suited for rapid development and variable traffic scenarios where

operational simplicity is a top priority. Kubernetes Engine is the most suitable option for large-scale, dynamic,

and mission-critical systems that require high scalability and efficient resource utilization.

Additionally, the performance gains achieved through optimization techniques such as caching, CDN

integration, and batch processing demonstrate that application-level and network-level optimizations play a

crucial role in maximizing cloud performance. These results highlight the importance of adopting a layered

optimization strategy rather than relying solely on infrastructure capabilities [20].

3.3.5. Limitations and Future Research Directions

Despite its contributions, this study has several limitations. First, the experiments were conducted using

a single web-based e-commerce application, which may not fully represent other workload types such as

machine learning inference or real-time analytics. Second, the evaluation was limited to a single cloud provider

and did not include cross-cloud fault tolerance or multi-region deployment scenarios.

Future research should extend this work by incorporating long-term cost analysis, evaluating machine

learning and data-intensive workloads, and conducting performance comparisons in multi-cloud environments.

Recent studies suggest that multi-cloud architectures can reduce vendor lock-in risks and improve system

resilience, making them a promising direction for further investigation [10], [14].

4. CONCLUSION

This study evaluated the performance, scalability, security, and cost characteristics of three primary

Google Cloud Platform (GCP) services Compute Engine, App Engine, and Kubernetes Engine through

experimental testing using a web-based application. The results demonstrate that each service exhibits distinct

strengths depending on workload characteristics. Compute Engine provides stable and predictable performance

for steady workloads. App Engine offers low latency and ease of management through automatic scaling, albeit

at a higher operational cost. Kubernetes Engine delivers the best balance of scalability and resource efficiency

for large-scale and dynamic applications. In addition, GCP’s integrated security mechanisms, including IAM

and encryption, along with compliance with international standards, confirm its suitability for enterprise and

public-sector environments.

Furthermore, the study demonstrates that performance optimization techniques, including caching,

CDN integration, batch processing, and request header optimization, significantly enhance API responsiveness

and throughput. Correlation analysis reveals that network latency is the primary factor influencing response

ISSN(P): 2797-2313 | ISSN(E): 2775-8575

211

MALCOM - Vol. 6 Iss. 1 January 2026, pp: 205-211

time in distributed cloud environments, underscoring the importance of network-level optimization in

conjunction with infrastructure selection. Despite higher operational costs, GCP provides long-term value

through automation, scalability, and discount mechanisms. Future research should extend this work by

examining long-term cost efficiency, evaluating additional workload types such as machine learning and data

analytics, and conducting comparative studies in multi-cloud and multi-region deployment scenarios to further

improve cloud architecture decision-making.

REFERENSCES

[1] R. Johnson and M. Lee, “A comparative study of AWS, Azure, and GCP,” International Journal of

Cloud Services, vol. 12, no. 3, pp. 123–130, 2022.

[2] J. Smith, “Cloud storage efficiency in Google Cloud,” Journal of Cloud Computing, vol. 15, pp. 45–56,

2023.

[3] D. Harris, “Security features of Google Cloud Platform,” Cloud Security Journal, vol. 5, no. 1, pp. 89–

95, 2022.

[4] K. Brown, “Container orchestration with Kubernetes Engine,” Cloud Innovation Journal, vol. 8, no. 2,

pp. 34–40, 2023.

[5] P. White, “Cost evaluation of GCP in enterprise environments,” Cloud Cost Journal, vol. 11, pp. 60–

70, 2023.

[6] H. Li and P. Chandra, “Performance analysis of Kubernetes autoscaling under heavy load,” Journal of

Cloud Computing Systems, vol. 9, no. 2, pp. 55–67, 2023.

[7] A. Kumar, “Machine learning implementation on GCP,” AI Cloud Journal, vol. 7, no. 1, pp. 15–20,

2022.

[8] R. Gupta, T. Sharma, and J. Lee, “Comparative evaluation of public cloud performance: AWS, Azure,

and GCP,” Journal of Cloud Infrastructure, vol. 10, no. 4, pp. 112–125, 2023.

[9] P. Singh, D. Tan, and E. Wong, “Optimizing cloud resource allocation using container-based

approaches,” International Journal of System Engineering, vol. 15, no. 2, pp. 65–80, 2024.

[10] F. Nasution and H. Park, “AI-driven resource optimization in GCP environments,” Journal of Applied

Cloud Engineering, vol. 6, no. 1, pp. 41–58, 2024.

[11] M. Rahman and K. Lee, “Cost-performance tradeoff in multi-cloud strategies,” Journal of Information

Systems, vol. 13, no. 2, pp. 98–112, 2024.

[12] C. O’Neill, “Compliance and governance in modern cloud infrastructures,” Cloud Compliance Review,

vol. 4, no. 3, pp. 77–88, 2023.

[13] L. Zhao et al., “Container performance under large-scale web workloads,” Journal of Web Systems, vol.

18, no. 1, pp. 22–37, 2024.

[14] S. Lee and M. Wong, “Evaluating fault tolerance in hybrid and multi-cloud environments,” Journal of

Advanced Cloud Studies, vol. 19, no. 3, pp. 101–118, 2025.

[15] P. White, “Cost evaluation of GCP in enterprise environments,” Cloud Cost Journal, vol. 11, pp. 60–

70, 2023.

[16] L. Zhao et al., “Container performance under large-scale web workloads,” Journal of Web Systems, vol.

18, no. 1, pp. 22–37, 2024.

[17] M. Rahman and K. Lee, “Cost-performance tradeoff in multi-cloud strategies,” Journal of Information

Systems, vol. 13, no. 2, pp. 98–112, 2024.

[18] P. Singh, D. Tan, and E. Wong, “Optimizing cloud resource allocation using container-based

approaches,” International Journal of System Engineering, vol. 15, no. 2, pp. 65–80, 2024.

[19] C. O’Neill, “Compliance and governance in modern cloud infrastructures,” Cloud Compliance Review,

vol. 4, no. 3, pp. 77–88, 2023.

[20] Y. Zhou and D. Tan, “HTTP optimization techniques for cloud-based APIs,” Journal of Networked

Systems, vol. 16, no. 1, pp. 45–59, 2024.

