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Abstract 

 
This paper presents an unsupervised approach to detect household electricity waste from IoT-derived windowed features 

using an Autoencoder (AE). The pipeline comprises median imputation, RobustScaler normalization, time-aware splitting 

(70/15/15), AE training with AdamW and early stopping, and adaptive per-home thresholds from the 99.5th percentile of 

reconstruction error. We evaluate dataset (23,028 windows; two homes, two channels) engineered with voltage, current, 

power, and power-factor statistics (mean/std/p95), slopes, and transients. Grid search selects a shallow AE (depth=1, 

width=128, bottleneck=16, dropout=0, ReLU, lr=1e-4, wd=1e-5). On the held-out test set (n=3,455) the mean 

reconstruction error is 3.17×10⁻³. Using per-home thresholds (homeA=0.0634, homeB=0.0859), the system flags ~0.52% 

of windows as waste/anomalies, with a higher incidence in homeA (0.81%) than homeB (0.23%). Feature-level error 

attribution highlights power-factor metrics and voltage/current/power slopes and variability, patterns consistent with 

inefficient or abruptly switching loads. The method is production-ready for IoT deployment and yields interpretable 

indicators for energy-saving actions without labels. 

Keywords: Autoencoder, Energy Waste, Household Electricity, Internet of Things, Unsupervised 

 

Abstrak 

 

Penelitian ini menyajikan pendekatan unsupervised untuk mendeteksi pemborosan energi listrik rumah tangga dari fitur 

jendela waktu berbasis IoT menggunakan Autoencoder (AE). Pipeline meliputi imputasi median, normalisasi 

RobustScaler, pemisahan berbasis waktu (70/15/15), pelatihan AE dengan AdamW dan early stopping, serta ambang 

adaptif per-rumah dari persentil 99,5% error rekonstruksi. Evaluasi dilakukan pada dataset energi listrik (23.028 

window; dua rumah, dua kanal) dengan fitur statistik tegangan, arus, daya, faktor daya (rata-rata/deviasi standar/p95), 

slope, dan transien. Grid search memilih AE dangkal (depth=1, width=128, bottleneck=16, dropout=0, ReLU, lr=1e-4, 

wd=1e-5). Pada test set (n=3.455), rerata error rekonstruksi sebesar 3,17×10⁻³. Dengan treshold per-rumah 

(homeA=0,0634, homeB=0,0859), sistem menandai ~0,52% window sebagai pemborosan/anomali, dengan insidensi 

lebih tinggi pada homeA (0,81%) dibanding homeB (0,23%). Atribusi error per-fitur menonjolkan metrik faktor daya 

serta slope/variabilitas tegangan, arus, dan daya, pola yang konsisten dengan beban tidak efisien atau switching 

mendadak. Metode ini siap dioperasikan pada ekosistem IoT dan memberikan indikator yang dapat ditafsirkan untuk 

tindakan penghematan tanpa memerlukan label. 

Kata Kunci: Autoencoder, Internet of Things, Listrik Rumah Tangga, Pemborosan Energi, Unsupervised 

 

 

 

1. PENDAHULUAN  

Efisiensi energi merupakan agenda global yang semakin mendesak karena pertumbuhan permintaan 

listrik tidak sebanding dengan ketersediaan sumber daya[1]. Di Indonesia, konsumsi energi pada sektor 

rumah tangga dan industri relatif tinggi dan kerap tidak diimbangi oleh praktik pemakaian yang efisien [2]. 

Kondisi ini menyebabkan potensi pemborosan energi yang sulit diidentifikasi secara dini, khususnya pada 
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level penggunaan listrik harian, sehingga diperlukan pendekatan yang mampu memantau dan mengevaluasi 

pola konsumsi energi secara sistematis. 

Perkembangan Internet of Things (IoT) memungkinkan pengumpulan data konsumsi listrik secara 

real-time melalui sensor dan smart meter, sehingga menyediakan data yang bersifat kontinu dan granular. 

Dalam konteks ini, pemodelan cerdas berbasis kecerdasan buatan (AI) menjadi pendekatan yang relevan 

untuk mendukung pemantauan dan pengambilan keputusan energi[3]. Khususnya, algoritma Autoencoder 

(AE) berpotensi digunakan untuk mempelajari pola konsumsi energi normal dan mendeteksi penyimpangan 

sebagai indikasi pemborosan, tanpa memerlukan data berlabel. 

Penelitian terkait deteksi anomali konsumsi energi telah dilakukan dengan berbagai pendekatan. 

Shahid et al. menunjukkan bahwa keluarga AE, termasuk Variational Autoencoder (VAE), efektif dalam 

mempelajari manifold konsumsi energi normal dan mendeteksi anomali tanpa label eksplisit [4]. Copiaco et 

al. menerapkan pendekatan deep learning untuk mendeteksi anomali pada konsumsi energi bangunan 

berbasis data deret waktu [3]. Pendekatan lain seperti Local Outlier Factor (LOF) telah digunakan untuk 

mendeteksi konsumsi energi abnormal di lingkungan industri [5], sementara metode sekuensial seperti SDAR 

digunakan untuk membedakan outlier sesaat dan perubahan tren konsumsi energi [6]. Selain itu, ekosistem 

sensor dan smart meter real-time yang semakin matang mendukung penerapan analitik energi pada tingkat 

rumah tangga [7]. 

Meskipun berbagai pendekatan telah dikembangkan, sebagian besar penelitian sebelumnya masih 

menghadapi beberapa keterbatasan, antara lain ketergantungan pada model yang kompleks, kebutuhan 

sumber daya komputasi yang tinggi, serta penggunaan ambang keputusan global yang kurang adaptif 

terhadap variasi karakteristik konsumsi antar rumah tangga. Selain itu, kebutuhan data berlabel sering kali 

sulit dipenuhi dalam konteks rumah tangga. Penelitian ini menawarkan kebaruan dengan mengusulkan 

penggunaan AE standar yang ringan secara komputasi, dikombinasikan dengan mekanisme ambang adaptif 

per rumah yang dikalibrasi berdasarkan distribusi data masing-masing rumah. 

Berdasarkan latar belakang tersebut, penelitian ini bertujuan untuk mengembangkan model deteksi 

pemborosan energi listrik rumah tangga berbasis AE dan IoT yang mampu mendeteksi anomali konsumsi 

energi pada level jendela waktu tanpa memerlukan data berlabel, serta menghasilkan sistem deteksi yang 

adaptif terhadap karakteristik konsumsi masing-masing rumah tangga. 

 

2. BAHAN DAN METODE  

2.1. Riset Metodologi 
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 Gambar 1. Diagram Alur system 

 

Gambar 1 menunjukkan diagram alur sistem deteksi pemborosan energi listrik rumah tangga yang 

diusulkan dalam penelitian ini. Proses diawali dengan pengumpulan data energi listrik, yang diperoleh dari 

perangkat pengukuran energi berbasis IoT pada lingkungan rumah tangga. Data yang dikumpulkan meliputi 

parameter kelistrikan seperti tegangan, arus, daya, dan faktor daya. Data energi yang diperoleh disimpan pada 

cloud untuk keperluan pengolahan dan analisis lebih lanjut. Penyimpanan terpusat ini memungkinkan 

pengelolaan data secara terstruktur serta mendukung proses pemrosesan data secara efisien. 

 Pada tahap berikutnya, data diproses menggunakan model AE yang dikombinasikan dengan 

mekanisme ambang adaptif (adaptive threshold). AE digunakan untuk mempelajari pola konsumsi energi 

normal, sedangkan ambang adaptif diterapkan untuk menyesuaikan batas deteksi anomali berdasarkan 

karakteristik konsumsi energi masing-masing rumah tangga. Hasil keluaran model kemudian dievaluasi pada 

tahap evaluasi akurasi model, dengan menganalisis nilai error rekonstruksi dan tingkat anomali yang 

terdeteksi. Tahap akhir dari sistem ini adalah penyajian informasi deteksi pemborosan energi, yang dapat 

digunakan sebagai dasar pengambilan keputusan dalam upaya penghematan energi listrik rumah tangga. 

 

2.2. Internet of Things (IoT) 

IoT merupakan paradigma teknologi yang memungkinkan objek fisik dilengkapi sensor dan 

kemampuan komunikasi untuk mengumpulkan serta mentransmisikan data melalui jaringan internet. IoT 

membentuk infrastruktur yang menghubungkan perangkat fisik dengan sistem komputasi sehingga data dapat 

diproses dan dianalisis secara otomatis tanpa intervensi manusia secara langsung [8]. 
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Dalam penelitian ini, IoT berperan sebagai penghubung antara dunia fisik dan sistem digital berbasis 

data. Pada pemantauan konsumsi energi listrik, IoT memungkinkan akuisisi data kelistrikan secara real-time 

dan berkelanjutan melalui smart meter dan sensor energi [9]. Data yang dihasilkan bersifat deret waktu, 

berdimensi tinggi, dan umumnya tidak berlabel. IoT dalam penelitian ini berfungsi sebagai infrastruktur 

pengumpulan data energi rumah tangga yang menjadi dasar penerapan algoritma pembelajaran mesin untuk 

mendeteksi pemborosan energi secara otomatis. 

 

2.3. Literature Review 

Penelitian terkait deteksi anomali konsumsi energi rumah tangga berkembang seiring ketersediaan 

data smart meter beresolusi tinggi. Berbagai pendekatan machine learning seperti algoritma KNN[10] dan 

statistik digunakan untuk mengidentifikasi pola konsumsi abnormal yang mengindikasikan pemborosan 

energi maupun perilaku tidak wajar pada lingkungan rumah tangga [11], [12], [13],[14], [15]. Pendekatan 

outlier detection berbasis jarak dan kepadatan, seperti LOF, banyak diterapkan pada sistem energi dan 

lingkungan industri. Metode ini efektif untuk mendeteksi deviasi lokal, namun memiliki keterbatasan dalam 

menangani data berdimensi tinggi dan deret waktu panjang, serta kurang adaptif terhadap variasi pola 

konsumsi energi antar entitas [5] 

Seiring meningkatnya kompleksitas data energi, pendekatan deep learning berbasis AE menjadi solusi 

yang banyak digunakan. AE mampu mempelajari representasi pola konsumsi energi normal dan mendeteksi 

anomali berdasarkan error rekonstruksi, terutama pada kondisi data tidak berlabel [16], [17]. Pengembangan 

lebih lanjut dilakukan melalui VAE untuk meningkatkan kemampuan generalisasi dan transfer knowledge 

antar domain energi. Pendekatan ini menunjukkan performa yang baik dalam mendeteksi anomali konsumsi 

listrik dan pemanas distrik, namun memiliki kompleksitas model dan biaya komputasi yang relatif lebih 

tinggi [4], [18], [19]. Penelitian lain mengusulkan modifikasi AE untuk meningkatkan akurasi dan lokalisasi 

anomali, seperti whitening-enhanced AE dan probabilistic AE. Meskipun memberikan peningkatan performa, 

pendekatan tersebut umumnya memerlukan konfigurasi model yang kompleks dan kurang efisien untuk 

implementasi IoT skala rumah tangga [20]. Integrasi IoT dengan machine learning memungkinkan deteksi 

anomali konsumsi energi dilakukan secara real-time. Beberapa studi berfokus pada deteksi pencurian listrik 

dan optimasi konsumsi energi berbasis IoT, namun sebagian besar masih menargetkan anomali ekstrem dan 

belum secara spesifik menangani pemborosan energi halus pada jendela waktu konsumsi rumah tangga [7].  

Berdasarkan tinjauan tersebut, masih terdapat celah penelitian dalam pengembangan sistem deteksi 

pemborosan energi rumah tangga yang ringan secara komputasi, tidak bergantung pada data berlabel, serta 

adaptif terhadap karakteristik konsumsi masing-masing rumah. Penelitian ini mengisi celah tersebut dengan 

mengusulkan AE standar yang dikombinasikan dengan mekanisme ambang adaptif per rumah untuk deteksi 

pemborosan energi berbasis IoT. 

 

2.4. Model Autoencoder 

AE adalah model pembelajaran representasi tak berlabel yang mempelajari pola “normal” suatu data 

dengan cara mengompresi dan kemudian merekonstruksi kembali vektor fitur input. Diberikan vektor fitur 

jendela waktu(x∈R^d ) dalam hal  ini statistik tegangan, arus, daya, faktor daya, slope, dan transien, AE 

terdiri dari encoder (g_ϕ ) yang memetakan (x) ke representasi laten berdimensi rendah (z=g_ϕ (x)) dan 

decoder (h_ψ ) yang memetakan kembali (x ̂=h_ψ (z)). Parameter model (θ=ϕ,ψ) dipelajari dengan 

meminimalkan loss rekonstruksi berbasis rata-rata kuadrat kesalahan: 

 

ℒ(θ); =;
1

N
∑

1

d
|xixî|2

2N
i=1 ,        (1) 

 

x̂𝑖 = 𝑓θ(xi).          (2) 

 

Gambar 2 adalah diagram blok AE. Pola konsumsi normal akan direkonstruksi dengan kesalahan 

kecil, sedangkan perilaku tidak lazim/boros seperti faktor daya turun tajam, lonjakan/penurunan mendadak, 

atau variabilitas daya tidak wajar akan sulit direkonstruksi sehingga menghasilkan kesalahan lebih besar. 

 

 

Gambar 2. Diagram AE 
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2.5. Protokol Train dan Tuning Hyperparameter 

Data train dan validasi digunakan untuk pelatihan AE dengan AdamW, learning rate dalam himpunan 

(1! × ! 10−3, 5! × ! 10−4), weight decay (10−5), batch size (128), depth (1), width (64,128), bottleneck 
(4,8,16), dropout (0,0), dan aktivasi (ReLU). Early stopping digunakan berdasarkan MSE validasi. 

 

2.6. Mekanisme Tresholding  

Pendekatan deteksi anomali berbasis AE memanfaatkan nilai error rekonstruksi. Data yang error-nya 

melampaui ambang batas dianggap anomali atau pemborosan energi. Berikut definisi anomali: 

 

𝐴𝑛𝑜𝑚𝑎𝑙𝑖(𝑥) = {
1, 𝐿(𝑥, 𝑥̂) >  τℎ 

0,  𝐿(𝑥, 𝑥̂) ≤ τℎ
}     (3) 

 

Ambang (τℎ) adaptif ditentukan berdasarkan distribusi error tiap rumah. HomeA memiliki ambang 0,063, 

sedangkan HomeB 0,086 seperti yang ditunjukka pada Tabel 1. Perbedaan ini menegaskan bahwa konsumsi 

energi tiap rumah memiliki karakteristik unik, sehingga threshold tunggal tidak cukup representatif. 

 

Table 1. Ambang Adaptif Per Rumah (Kuantil 99,5% Skor Train-Validasi) 

Home Tresholds 

A 0.06343867445955312 

B 0.08593877118804358 

 

2.7. Metode Evaluasi  

Evaluasi kuantitatif berfokus pada rerata error rekonstruksi di test, jumlah dan laju anomali yang 

terdeteksi, distribusi error, dan attribusi per-fitur (kontribusi error per fitur) untuk interpretabilitas. 

1. Akurasi rekonstruksi diukur dengan Mean Reconstruction Error (MRE) 

 

(MRE =
1

𝑁test
∑ 𝑠(𝑥𝑖)𝑁test

𝑖=1 ), 𝑑𝑒𝑛𝑔𝑎𝑛 (𝑠(𝑥) =
1

𝑑
|𝑥 − 𝑥̂|22)              (4) 

 

2. Intensitas deteksi dilaporkan sebagai jumlah anomali dan Anomaly Rate 

 

 (AR =
1

𝑁test
∑ o1[𝑠(𝑥𝑖) ≥ 𝑇𝑔(𝑖)])         (5) 

 

baik global maupun per-rumah/per-channel, untuk menilai proporsi kejadian terhadap total observasi. 

 

3. Karakteristik distribusi skor dianalisis melalui histogram dan ringkasan kuantil 

(𝑝50, 𝑝90, 𝑝99, 𝑝99.5); konsistensinya terhadap ambang pelatihan (𝑇𝑔) diperiksa guna memastikan 

kalibrasi (𝑝𝑟𝑜𝑝𝑜𝑟𝑠𝑖𝑠𝑘𝑜𝑟 < (𝑇𝑔)) sesuai desain. 

 

4. Interpretabilitas fitur dihitung dari kontribusi per-𝑓𝑖𝑡𝑢𝑟 (𝑒𝑗 = (𝑥𝑗 − 𝑥𝑗̂)
2

) dan dirangkum pada Top-N 

anomali (N=30) untuk memperoleh peringkat fitur yang dominan. Seluruh metrik dilaporkan beserta 

agregasi per-kelompok (rumah/kanal) dan profil waktu (deret waktu). 

 

3. HASIL DAN DISKUSI 

3.1. Dataset dan Rekayasa Fitur 
Dataset terdiri atas 23.028 window dari dua rumah (homeA, homeB) dan dua kanal (1, 2) dengan 

resolusi sekitar 30 detik per rumah-kanal. Setiap window memiliki fitur numerik berikut: 

1. Tegangan  : V_mean, V_std, V_p95, V_slope 

2. Arus  : I_mean, I_std, I_p95, I_slope 

3. Daya  : P_mean, P_std, P_p95, P_slope 

4. Faktor daya : pf_mean, pf_std, pf_p95, pf_slope 

5. Peristiwa transien : P_transients 

Serta kolom identitas: home, channel, dan time stemp window_start. 

 

Dalam pre-processing , kami menerapkan imputasi median dan normalisasi RobustScaler. Dataset 

diurutkan berdasarkan waktu dan dipecah menjadi train/val/test = 70%/ 15%/ 15% secara time-aware.Data 

dpat dilihat pada Tabel 2,3 dan 4. 
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Table 2. Ringkasan Dataset RAW 

No. Home channel V I P pf Wh 

1 A 1 219,99 0,40 91,03 0,96 0,05 

2 A 1 220,12 0,48 105,52 0,97 0,11 

3 A 1 220,41 0,49 104,85 0,95 0,17 

...  .. ... ... ... ... ... 

34599 B 2 219,74 0,06 15,98 0,96 1107,93 

34600 B 2 221 0,88 16,88 0,94 1107,94 

 

Table 3. Dataset Berbasis Window dan Stride 

No. Home Channel 
Window 

Start 
V_mean V_std V_p95 V_slope I_mean ... P_transient 

1 A 1 00:00:00 221,64 0,85 222,99 0,05 0,46 .. 1 

2 A 1 00:00:30 222,26 0,69 223,15 0,04 0,47 .. 4 

3 A 1 00:01:00 222,65 0,45 223,27 0,02 0,46 .. 3 

...  .. ... ... ... ... ... ... ..  

23027 B 2 23:57:30 217,74 0,65 218,93 0,03 0,07 .. 6 

23028 B 2 23:58:00 218,36 0,86 219,80 0,05 0,07 .. 6 

 

Table 4. Jumlah Dataset Split (Window) 

Train Validasi Test Fitur (Numerik) 

16119 3454 3455 17 

 

3.2. Analisa Rekonstruksi error  

Rerata error rekonstruksi pada data uji sebesar 0,0031 menunjukkan performa tinggi model dalam 

memahami pola konsumsi energi normal. Histogram error memperlihatkan distribusi dengan puncak tajam 

pada error rendah, yang menandakan sebagian besar konsumsi listrik berada dalam kategori efisien. Ekor 

distribusi panjang mengindikasikan keberadaan anomali atau periode pemborosan energi. Temuan ini 

memperlihatkan bahwa AE berhasil membedakan pola konsumsi normal dan abnormal/ anomali secara 

signifikan yang dapat dilihat pada Gambar 3 dan 4. 

 

 

Gambar 3. Distribusi Rekonstruksi Error 

 

Gambar 4. Rekonstruksi Error Vs Time 
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3.3. Adaptive Tresholding 

Ambang adaptif memperlihatkan perbedaan pola konsumsi energi antar rumah. HomeA lebih sensitif 

dengan ambang 0,063, sementara HomeB lebih toleran dengan ambang 0,086. Hal ini menggambarkan 

variasi gaya hidup atau jumlah perangkat yang digunakan di masing-masing rumah. Dengan pendekatan ini, 

deteksi anomali menjadi lebih akurat karena memperhitungkan karakteristik unik tiap rumah tangga, 

mengurangi risiko false positive pada rumah dengan konsumsi tinggi. 

 

3.4. Performa Deteksi Anomali  

Sepuluh anomali terbesar berhasil diidentifikasi berdasarkan error rekonstruksi. Pola ini 

merepresentasikan penggunaan energi yang tidak efisien, seperti lonjakan konsumsi pada jam tidak lazim 

atau beban daya yang tidak sesuai dengan profil normal rumah tangga. Temuan ini menunjukkan bahwa 

model dapat berfungsi sebagai sistem peringatan dini terhadap konsumsi listrik boros yang dapat dilihat pada 

Gambar 5. 

 

 

Gambar 5. Sepuluh Anomali Terbesar Berdasarkan Error Rekonstruksi 

 

3.5. Kontribusi Fitur  

Analisis kontribusi fitur menunjukkan bahwa arus dan daya merupakan variabel dengan kontribusi 

terbesar terhadap error rekonstruksi, sehingga menjadi indikator utama dalam pendeteksian anomali 

konsumsi energi. Sebaliknya, tegangan menunjukkan kontribusi yang relatif rendah karena cenderung stabil 

pada sistem kelistrikan rumah tangga. Temuan ini mengindikasikan bahwa lonjakan arus atau peningkatan 

daya yang tidak proporsional merupakan ciri utama pemborosan energi pada level jendela waktu konsumsi. 

Hasil ini menghasilkan output penelitian berupa indikator fitur dominan pemborosan energi, yang dapat 

dimanfaatkan sebagai dasar interpretasi teknis dan pengambilan keputusan penghematan energi pada sistem 

berbasis IoT. 

  

3.6. Diskusi 
Hasil penelitian menunjukkan bahwa AE mampu memodelkan pola konsumsi energi normal secara 

efektif, yang ditunjukkan oleh rendahnya error rekonstruksi pada data uji. Kemampuan ini muncul karena 

AE dilatih untuk merekonstruksi pola konsumsi yang dominan, sehingga perilaku konsumsi yang 

menyimpang menghasilkan error yang lebih tinggi dan terdeteksi sebagai anomali. Dibandingkan dengan 

pendekatan berbasis outlier detection seperti LOF, metode AE memiliki keunggulan dalam menangani data 

berdimensi tinggi dan deret waktu yang kompleks tanpa memerlukan asumsi distribusi data. Berbeda dengan 

pendekatan VAE yang lebih kompleks secara komputasi, penggunaan AE standar dalam penelitian ini lebih 

sesuai untuk implementasi pada lingkungan IoT rumah tangga dengan keterbatasan sumber daya. 

Penerapan ambang adaptif per rumah terbukti meningkatkan relevansi deteksi anomali dengan 

menyesuaikan karakteristik konsumsi energi masing-masing rumah tangga. Pendekatan ini mengurangi 

potensi false positive yang umum terjadi pada penggunaan ambang global, khususnya pada rumah dengan 

tingkat konsumsi energi yang berbeda secara signifikan. Meskipun menunjukkan hasil yang menjanjikan, 

penelitian ini memiliki keterbatasan pada jumlah rumah tangga yang dianalisis serta belum 

mempertimbangkan dinamika musiman konsumsi energi dalam jangka panjang. Pengembangan selanjutnya 

dapat diarahkan pada evaluasi multi-rumah berskala besar, integrasi model sekuensial, serta implementasi 

langsung pada perangkat edge IoT untuk deteksi pemborosan energi secara real-time. 

 



 

                MALCOM-06(01): 178-185 

     

 184 Model Deteksi Pemborosan Energi Listrik Rumah Tangga... (Piu et al, 2026) 

4. KESIMPULAN 

Penelitian ini membuktikan bahwa AE merupakan pendekatan efektif dalam mendeteksi pemborosan 

energi rumah tangga. Hasil utama meliputi error rekonstruksi rendah (0,0031) pada data uji, threshold adaptif 

meningkatkan sensitivitas deteksi (homeA: 0,063; homeB: 0,086), anomali signifikan berhasil teridentifikasi 

dan relevan dengan pola konsumsi perangkat berdaya tinggi, arus dan daya terbukti sebagai indikator 

dominan pemborosan energi. Pipeline akhir imputasi median, RobustScaler, pemisahan berbasis waktu, 

pelatihan AE (AdamW, early stopping), pemilihan hiperparameter melalui grid, serta penetapan ambang 

p99.5 per-rumah—menghasilkan MRE test 3.17×10⁻³ dan AR global 0.52% pada korpus uji (3.455 window). 

Nilai ambang 0.0634 (homeA) dan 0.0859 (homeB) menjaga kalibrasi keputusan antar-rumah, sementara 

analisis per-fitur memberi petunjuk teknis (pf dan slope/variabilitas) yang relevan untuk tindakan 

penghematan. 
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