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Abstract 

 
This research evaluates the performance of three machine learning models—Neural Network (NN), Convolutional Neural 

Network (CNN), and Recurrent Neural Network (RNN) using Long Short-Term Memory (LSTM) units—in predicting 

chronic disease indicators using the CDC's Chronic Disease Indicators (CDI) dataset. The study employs a comprehensive 

preprocessing pipeline and 5-fold cross-validation to ensure robustness and generalizability of the results. The CNN model 

outperformed both the NN and RNN models across all key performance metrics, achieving an accuracy of 0.6303, precision 

of 0.6445, recall of 0.6303, and F1 score of 0.5950. The superior performance of the CNN is attributed to its ability to 

capture spatial hierarchies and interactions within the structured dataset. The findings underscore the importance of 

selecting appropriate machine learning architectures based on the data characteristics. This research provides valuable 

insights for public health officials and policymakers to enhance chronic disease monitoring, early detection, and 

intervention strategies. Future work will explore hybrid models and advanced techniques to further improve predictive 

performance. This study highlights the potential of CNNs in public health informatics and sets a foundation for further 

research in this domain. 
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1. INTRODUCTION  

Chronic diseases, including heart disease, cancer, and diabetes, are the leading causes of death and 

disability globally, posing significant public health challenges. Addressing these challenges requires robust 

data to inform public health practices and policies. The Centers for Disease Control and Prevention (CDC) has 

developed a comprehensive dataset, the Chronic Disease Indicators (CDI), to provide a cross-cutting set of 124 

indicators for states, territories, and large metropolitan areas [1], [2]. This dataset allows uniform collection 

and reporting of chronic disease data, offering a valuable resource for public health research and intervention 

planning. Over the past 15 years, various health-related questions have been assessed across the United States, 

providing a rich dataset with confidence intervals and demographic stratifications [3]–[5]. The availability of 

such detailed data presents an opportunity to leverage advanced machine learning techniques to analyze and 

predict chronic disease trends and outcomes [6]–[8].  

The application of machine learning in healthcare has gained considerable attention in recent years. 

Studies have demonstrated the potential of machine learning models to improve disease diagnosis, predict 

patient outcomes, and enhance healthcare delivery. Traditional machine learning algorithms, such as logistic 

regression, decision trees, and support vector machines, have been widely used for predicting chronic diseases 

[9]–[11]. However, these models often struggle with high-dimensional and complex datasets [12]–[14]. Deep 

learning, a subset of machine learning, has shown promising results in various healthcare applications. CNNs, 

originally designed for image recognition, have been adapted for analyzing time-series and structured data, 

providing significant improvements in performance [15]–[17]. RNNs, particularly Long Short-Term Memory 

(LSTM) networks, are well-suited for sequential data analysis, making them ideal for capturing temporal 

patterns in health data [18]. Recent research has explored the integration of CNN and RNN architectures to 

leverage the strengths of both models, demonstrating improved predictive accuracy and robustness [19]. 

Chronic diseases continue to burden healthcare systems worldwide, necessitating effective strategies for early 

detection, prevention, and management. The COVID-19 pandemic has further exacerbated the impact of 
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chronic diseases, highlighting the need for timely and accurate public health data [20]. Leveraging advanced 

machine learning techniques to analyze chronic disease indicators can provide valuable insights for 

policymakers, healthcare providers, and researchers, ultimately contributing to better health outcomes and 

resource allocation [21]. 

Current state-of-the-art approaches in chronic disease prediction predominantly utilize deep learning 

models. CNNs have been successfully applied to classify medical images and detect patterns in physiological 

signals. RNNs, especially LSTMs, have been effective in modeling temporal dependencies in health data, such 

as patient monitoring and disease progression [22]. The primary goal of this research is to develop and evaluate 

machine learning models for predicting chronic disease indicators using the CDI dataset. Specifically, we aim 

to preprocess and standardize the CDI dataset to ensure high-quality input data for model training, omplement 

and compare the performance of Deep NN, CNNs, and LSTM models, furthermore we identify the most 

effective model in terms of predictive accuracy, precision, recall, and F1 score. Lastly, we provide practical 

recommendations for applying these models in public health practice. The remaining sections of this research 

article are structured as follows. The Methods section details the data preprocessing steps, model architectures, 

and evaluation metrics used in this study. The Results section presents the performance comparison of the 

different models, highlighting the advantages of the each deep learning variant approach. The Discussion 

section interprets the findings, discusses the implications for public health practice, and identifies potential 

limitations of the study. Finally, the Conclusion section summarizes the key contributions, outlines future 

research directions, and emphasizes the significance of integrating advanced machine learning techniques in 

public health informatics. 

 

2. MATERIALS AND METHOD  

This section outlines the systematic procedures employed in this research to develop and evaluate 

machine learning models for predicting chronic disease indicators using the Chronic Disease Indicators (CDI) 

dataset. The methodology includes data collection, preprocessing, feature selection, model selection, model 

training and evaluation, hyperparameter tuning, and performance metrics. The dataset used in this research is 

the CDC’s Chronic Disease Indicators (CDI) dataset, which provides a comprehensive set of 124 indicators for 

states, territories, and large metropolitan areas in the United States. The dataset spans over 15 years and 

includes various health-related questions assessed at different times and locations, providing a valuable 

resource for public health research, dataset can be downloaded from [23]. To preprocess the data, the dataset 

was loaded into a Pandas DataFrame for manipulation and analysis. Missing values in the 'DataValue' column 

were filled with the median value to maintain data consistency. Columns with all missing values were dropped 

from the dataset. Categorical variables were encoded using Label Encoding to convert them into numerical 

values suitable for machine learning models. Features and target variables were defined, with the target variable 

'DataValueTypeID' selected, and other irrelevant columns dropped. The feature set was standardized to ensure 

that each feature contributes equally to the model’s performance. The target variable was encoded using one-

hot encoding to prepare it for model training. 

Three machine learning models were selected for this research: Neural Network (NN), Convolutional 

Neural Network (CNN), and Recurrent Neural Network (RNN). Each model was chosen for its unique 

strengths in handling complex datasets. A traditional neural network with fully connected layers was 

implemented as presented in equation 1. The architecture consisted of an input layer, hidden layers with ReLU 

activation, dropout layers for regularization, and an output layer with softmax activation. 

 

NN model architecture: ℎ𝑖 = 𝜎(𝑊𝑖ℎ𝑖−1 + 𝑏𝑖) (1) 

 

CNN was designed to capture spatial patterns in the data. The architecture included convolutional 

layers, max-pooling layers, and fully connected layers as presented in equation 2. 

 

CNN model architecture: ℎ𝑖,𝑗 = 𝜎 ( ∑ ∑ 𝑊𝑖,𝑗,𝑚,𝑛ℎ𝑖−𝑚,𝑗−𝑛

𝑁−1

𝑛=0

𝑀−1

𝑚=0

+ 𝑏𝑖,𝑗) (2) 

 

An RNN, specifically an LSTM network, was implemented to capture temporal dependencies in the 

data. The architecture included LSTM layers, dropout layers for regularization, and fully connected layers as 

presented in equation 3. 

 

LSTM model architecture: ℎ𝑡 = 𝜎(𝑊𝑓ℎ𝑡−1 + 𝑈𝑓𝑥𝑡 + 𝑏𝑓) (3) 

 

The models were trained and evaluated using 5-fold cross-validation with the StratifiedKFold method 

to ensure that each fold had a representative distribution of classes. Cross-validation was used to assess the 
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generalizability of the models. Each model was trained and evaluated using cross-validation, with performance 

metrics such as accuracy, precision, recall, and F1 score computed for each fold. Performance metrics were 

calculated as presented in the equation 4-7. 

 

Accuracy =
TP + TN

TP + TN + FP + FN
 (4) 

 

Precision =
TP

TP + FP
 (5) 

 

Recall =
TP

TP + FN
 (6) 

 

F1 Score = 2 ×
Precision × Recall

Precision + Recall
 (7) 

 

Where TP, TN, FP, and FN represent true positives, true negatives, false positives, and false negatives, 

respectively. Hyperparameter tuning was performed to optimize the performance of the models. Grid search 

and random search techniques were used to identify the best combination of hyperparameters, such as the 

number of layers, number of neurons per layer, learning rate, batch size, and dropout rate. The optimal 

hyperparameters were selected based on the model's performance on the validation set. 

Each model was evaluated using the cross-validation method, and their performance metrics were 

compared. Input data for CNN and RNN models was reshaped to match the expected input shapes. The 

performance of the models was evaluated by computing the mean and standard deviation of each metric to 

assess the models' generalizability and robustness. This research methodology outlines a comprehensive 

approach to developing and evaluating machine learning models for predicting chronic disease indicators using 

the CDI dataset. By systematically preprocessing the data, implementing, and comparing different model 

architectures, and rigorously evaluating their performance, this study aims to identify the most effective model 

for analyzing chronic disease data and providing actionable insights for public health practice. 

 

3. RESULTS AND DISCUSSION  

The performance of three different machine learning models—Neural Network (NN), Convolutional 

Neural Network (CNN), and Recurrent Neural Network (RNN) using Long Short-Term Memory (LSTM) 

units—was evaluated for predicting chronic disease indicators using the Chronic Disease Indicators (CDI) 

dataset as presented in the table 1. The models were assessed based on accuracy, precision, recall, and F1 score 

metrics, and the results were obtained using 5-fold cross-validation to ensure robustness and generalizability. 

The Neural Network (NN) achieved an accuracy of 0.6180 with a standard deviation of 0.0035. The precision 

was 0.6288 with a standard deviation of 0.0370, recall matched the accuracy at 0.6180 with a standard deviation 

of 0.0035, and the F1 score was 0.5607 with a standard deviation of 0.0315. These results indicate that the NN 

model had a moderate ability to correctly classify the chronic disease indicators but struggled to balance 

precision and recall, as reflected in the lower F1 score. 

The NN's performance demonstrates its capability to handle complex datasets, yet it falls short in 

optimizing both precision and recall simultaneously. The F1 score, which balances precision and recall, being 

lower than both, suggests that while the model was fairly good at making correct predictions (precision) and 

identifying true cases (recall), it was less successful when these metrics were considered together.  Furthermore, 

the CNN outperformed the NN in several metrics. The CNN achieved an accuracy of 0.6303 with a standard 

deviation of 0.0027. The precision was 0.6445 with a standard deviation of 0.0410, recall matched the accuracy 

at 0.6303 with a standard deviation of 0.0027, and the F1 score was 0.5950 with a standard deviation of 0.0239. 

These results suggest that the CNN model was better at identifying patterns and features in the CDI dataset, 

resulting in improved performance across all metrics compared to the NN. Then, the CNN's ability to perform 

better is likely due to its architecture, which is adept at capturing spatial hierarchies in data through 

convolutional layers. This capability is particularly useful in structured data, where interactions between 

features can be spatially oriented. The higher precision and recall indicate that the CNN made more correct 

predictions and was better at identifying true cases, leading to a higher F1 score as well. 

The RNN using LSTM units showed similar performance to the NN but did not surpass the CNN. The 

RNN achieved an accuracy of 0.6195 with a standard deviation of 0.0029. The precision was 0.6197 with a 

standard deviation of 0.0165, recall matched the accuracy at 0.6195 with a standard deviation of 0.0029, and 

the F1 score was 0.5707 with a standard deviation of 0.0376. These metrics indicate that while the RNN was 

capable of capturing temporal dependencies in the data, it did not significantly outperform the NN and was less 

effective than the CNN. The LSTM's performance highlights its strength in handling sequential data, as it can 

retain information over time through its memory units. However, the CDI dataset, while complex, may not 
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have contained the type of temporal dependencies that LSTMs excel at capturing, which could explain why 

the RNN did not outperform the CNN. The lower F1 score relative to the CNN suggests that while the RNN 

was decent at making predictions and identifying true cases, it faced challenges in balancing these aspects 

effectively. 

Comparing the three models, the CNN emerged as the most effective model for predicting chronic 

disease indicators using the CDI dataset. It achieved the highest accuracy, precision, and F1 score, indicating 

a superior ability to identify and classify chronic disease indicators accurately. The CNN's architecture, which 

excels at detecting patterns and interactions between features, likely contributed to its better performance. The 

NN and RNN models, while effective, did not match the CNN's performance. The NN, with its simpler 

architecture, struggled to optimize precision and recall simultaneously. The RNN, despite its advanced 

architecture for handling sequential data, did not find significant temporal patterns in the CDI dataset that 

would leverage its full potential. 

The results of this study highlight the importance of selecting appropriate machine learning architectures 

based on the nature of the dataset. The CDI dataset, comprising structured public health data, benefitted most 

from the CNN's capability to capture spatial hierarchies and interactions between features. This finding is 

consistent with previous research that demonstrates CNNs' effectiveness in handling structured and image-like 

data. The moderate performance of the NN and RNN models underscores the challenges these architectures 

face with the CDI dataset. The NN, while flexible and powerful, may require more tuning and optimization to 

achieve better performance. The RNN's design for sequential data suggests that it might perform better with 

datasets containing clearer temporal sequences or time-series data. Hyperparameter tuning played a crucial role 

in optimizing each model's performance. Techniques such as grid search and random search were employed to 

identify the best combination of hyperparameters, including the number of layers, neurons per layer, learning 

rate, batch size, and dropout rate. This process helped improve the models' performance, but the inherent 

strengths and weaknesses of each architecture ultimately determined the outcomes. 

The study's findings have significant implications for public health practice. By identifying the most 

effective machine learning model for predicting chronic disease indicators, public health officials and 

policymakers can leverage these insights to enhance disease monitoring, early detection, and intervention 

strategies. The superior performance of the CNN model suggests that it can be effectively applied to analyze 

complex health datasets, providing valuable predictions and insights. 

Future research could explore hybrid models that combine the strengths of CNNs and RNNs to further 

improve performance. Additionally, incorporating more advanced techniques such as attention mechanisms 

could help capture more nuanced patterns in the data. Expanding the dataset to include more temporal elements 

or additional features could also provide a more comprehensive evaluation of these models' capabilities. 

 

Table 1. Classification Report – Deep Learning Architectures 

Model Accuracy Precision Recall F1 Score 

Neural Network 0.6180 ± 0.0035 0.6288 ± 0.0370 0.6180 ± 0.0035 0.5607 ± 0.0315 

Convolutional Neural 

Network 
0.6303 ± 0.0027 0.6445 ± 0.0410 0.6303 ± 0.0027 0.5950 ± 0.0239 

Recurrent Neural Network  0.6195 ± 0.0029 0.6197 ± 0.0165 0.6195 ± 0.0029 0.5707 ± 0.0376 

  

4. CONCLUSION  

This research aimed to evaluate and compare the performance of three machine learning models—

Neural Network (NN), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN) using 

Long Short-Term Memory (LSTM) units—in predicting chronic disease indicators using the Chronic Disease 

Indicators (CDI) dataset. The study found that the CNN model outperformed both the NN and RNN models 

across all key performance metrics, including accuracy, precision, recall, and F1 score. The CNN's superior 

performance can be attributed to its ability to capture spatial hierarchies and interactions between features, 

making it particularly effective for structured datasets like the CDI. This finding underscores the importance 

of selecting the appropriate machine learning architecture based on the nature of the data. While the NN and 

RNN models showed moderate performance, they did not match the efficacy of the CNN, highlighting the 

challenges these models face with the CDI dataset. The results have significant implications for public health 

practice. By identifying the most effective machine learning model for predicting chronic disease indicators, 

public health officials and policymakers can enhance disease monitoring, early detection, and intervention 

strategies. The insights gained from this study can inform the development of more accurate and reliable 

predictive models, ultimately contributing to better health outcomes and resource allocation. Future research 

should explore hybrid models that combine the strengths of CNNs and RNNs to further improve performance. 

Additionally, incorporating advanced techniques such as attention mechanisms could capture more nuanced 

patterns in the data. Expanding the dataset to include more temporal elements or additional features could 

provide a more comprehensive evaluation of these models' capabilities. 
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