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Abstract 

 
The prevalence of chronic diseases poses significant challenges to public health systems worldwide. This study evaluates 

the performance of four machine learning models—Gradient Boosting Classifier, Support Vector Machine (SVM), Logistic 

Regression, and Random Forest—in classifying chronic disease indicators using the U.S. Chronic Disease Indicators (CDI) 

dataset. The models were assessed based on accuracy, precision, recall, F1 score, classification report, and confusion 

matrix to determine their effectiveness. The Gradient Boosting Classifier outperformed other models with an accuracy of 

64.36%, precision of 63.72%, recall of 64.36%, and F1 score of 63.88%. While SVM and Random Forest demonstrated 

moderate performance, Logistic Regression served as a baseline for comparison. The study highlights the Gradient 

Boosting Classifier's superiority in handling the complexities of the CDI dataset, suggesting its potential for improving 

chronic disease prediction and management. Future research should focus on refining these models, addressing class 

imbalances, and incorporating domain knowledge to enhance interpretability and applicability in real-world scenarios.  

 

Keyword: Chronic Disease Classification, Chronic Disease Indicators, Gradient Boosting, Machine Learning, Support  

    Vector Machine.  

 

 

 

1. INTRODUCTION  

Chronic diseases, also known as non-communicable diseases (NCDs), have emerged as a leading cause 

of morbidity and mortality globally, placing immense pressure on healthcare systems and economies [1]–[3]. 

In the United States, chronic diseases such as heart disease, cancer, and diabetes are responsible for 

approximately 70% of all deaths, underscoring the urgent need for effective prevention, management, and 

treatment strategies [4]–[6]. These diseases not only diminish the quality of life for individuals but also 

contribute significantly to healthcare costs and lost productivity [7]. The growing prevalence of chronic 

diseases has spurred extensive research efforts aimed at understanding their etiology, risk factors, and optimal 

intervention approaches [8]. In this context, the application of machine learning (ML) techniques offers 

promising avenues for enhancing the accuracy and efficiency of chronic disease prediction and management 

[9]. The integration of machine learning into healthcare analytics has the potential to revolutionize the early 

detection and diagnosis of chronic diseases [10]. By leveraging vast amounts of health-related data, ML 

algorithms can identify patterns and correlations that may elude traditional statistical methods [11]. This 

capability is particularly valuable given the multifactorial nature of chronic diseases, which often involve 

complex interactions between genetic, environmental, and lifestyle factors [12]. The literature on machine 

learning in healthcare is extensive, encompassing a wide range of approaches and methodologies. Studies have 

demonstrated the efficacy of various ML models, including decision trees, support vector machines, neural 

networks, and ensemble methods, in predicting the onset and progression of chronic diseases [13]. 

One of the critical challenges in chronic disease research is the accurate classification of disease 

indicators from large and heterogeneous datasets [14]. Traditional statistical methods, while valuable, often 

fall short in handling the complexity and high dimensionality of such data. Machine learning techniques, on 

the other hand, can effectively manage and analyze large-scale datasets, uncovering subtle patterns and 

relationships that are crucial for disease prediction and prognosis [15]. The state-of-the-art ML models, such 

as random forests, gradient boosting machines, and deep learning architectures, have shown remarkable 

performance in various healthcare applications, from image-based diagnostics to electronic health record 

(EHR) analysis [16]–[19]. Despite the significant advancements in this field, there are still notable gaps and 

challenges that need to be addressed. One major gap is the generalizability of ML models across different 

populations and healthcare settings. Many studies focus on specific cohorts or datasets, limiting the 
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applicability of their findings to broader contexts. Additionally, issues related to data quality, such as missing 

values, imbalanced classes, and noise, pose substantial hurdles to the development of robust ML models [20]. 

Another critical challenge is the interpretability of complex ML models, which is essential for gaining the trust 

of healthcare professionals and ensuring the clinical utility of the predictions. 

Our research aims to contribute to this evolving field by developing and evaluating machine learning 

models for the classification of chronic disease indicators using a comprehensive dataset from the U.S. Chronic 

Disease Indicators (CDI) database. The CDI dataset, maintained by the Centers for Disease Control and 

Prevention (CDC), provides a rich source of information on chronic disease prevalence, risk factors, and 

preventive measures across the United States [21]. By applying advanced ML techniques to this dataset, we 

seek to enhance the accuracy and interpretability of chronic disease predictions, thereby supporting more 

effective disease management strategies. The primary goal of our research is to build and compare the 

performance of different ML models, including Random Forest, Logistic Regression, Support Vector Machine 

(SVM), and Gradient Boosting Classifier, in predicting chronic disease indicators. We will systematically 

evaluate these models based on various performance metrics, such as accuracy, precision, recall, and F1 score, 

to identify the most effective approach for this task. Additionally, we aim to address common data quality 

issues, such as missing values and imbalanced classes, through appropriate preprocessing and resampling 

techniques. Our study will also explore the interpretability of the models by examining feature importance and 

model explanations. 

A critical aspect of our research is the gap analysis, which highlights the limitations of existing studies 

and identifies areas for improvement. One significant gap is the lack of comprehensive evaluations of different 

ML models on the CDI dataset, which encompasses a wide range of chronic disease indicators and risk factors. 

Furthermore, many existing studies do not adequately address the challenges posed by data quality issues, 

leading to potential biases and inaccuracies in their predictions. Our research seeks to fill these gaps by 

providing a thorough and systematic evaluation of multiple ML models on the CDI dataset, incorporating 

robust data preprocessing and validation techniques. The contribution of our research lies in its comprehensive 

approach to chronic disease classification using machine learning. By systematically comparing different ML 

models and addressing key data quality issues, we aim to provide valuable insights into the most effective 

techniques for predicting chronic disease indicators. Our findings will have practical implications for 

healthcare practitioners and policymakers, supporting more accurate and timely interventions for chronic 

disease prevention and management. Additionally, our study will contribute to the broader field of healthcare 

analytics by advancing the understanding of ML applications in chronic disease research. 

The remaining structure of this journal article is organized as follows: Section 2 details the research 

materials and methodology, including data preprocessing, model selection, and evaluation procedures. Section 

3 discusses the results of our experiments, comparing the performance of different ML models and analyzing 

their implications. Finally, Section 4 concludes the article by summarizing the key findings, discussing the 

limitations of our study, and suggesting directions for future research. 

 

2. MATERIALS AND METHOD  

The research method section delineates the systematic procedures employed in our study to develop and 

evaluate machine learning models for the classification of chronic disease indicators as presented in the Figure 

1. This section encompasses data collection, preprocessing, feature selection, model selection, model training 

and evaluation, hyperparameter tuning, and performance metrics. Our approach ensures a rigorous and 

reproducible methodology aimed at achieving robust and interpretable results. 

 

2.1. Data Collection 

The dataset used in this study is the U.S. Chronic Disease Indicators (CDI) dataset, which is publicly 

available and maintained by the Centers for Disease Control and Prevention (CDC). The CDI dataset comprises 

a comprehensive collection of data on chronic disease prevalence, risk factors, and preventive measures across 

the United States. It includes various attributes such as demographic information, health behaviors, and clinical 

measures, providing a rich and detailed source of information suitable for machine learning applications in 

chronic disease research. The CDI dataset is structured to include several key types of information. 

Demographic information includes attributes such as age, sex, race, and geographic location, which help in 

understanding the distribution of chronic diseases across different population groups. Health behaviors 

encompass information on lifestyle factors such as smoking status, physical activity, and dietary habits, which 

are critical risk factors for many chronic diseases. Clinical measures include data such as blood pressure, 

cholesterol levels, and body mass index (BMI), which provide direct indicators of health status and chronic 

disease risk, the dataset also can be downloaded from [22]. 

The dataset is organized in a tabular format, where each row represents an observation (e.g., an 

individual or a population group) and each column represents a specific attribute. For instance, the dataset may 

include columns for Age, Sex, Race, SmokingStatus, PhysicalActivityLevel, BloodPressure, Cholesterol, and 
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various other measures relevant to chronic disease monitoring. Mathematically, the dataset can be represented 

as a matrix (𝑋) of dimensions ( 𝑛 × 𝑚 ), where ( 𝑛 ) is the number of observations and ( 𝑚 ) is the number 

of attributes. Each element (𝑥𝑖𝑗) in the matrix corresponds to the value of the ( 𝑗 )-th attribute for the ( 𝑖 )-th 

observation. The target variable ( 𝑦 ), indicating the type of data value, can be represented as a vector of length 

( 𝑛 ) as presented in the equation 1. 

 

𝑿 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑚

𝑥21 𝑥22 ⋯ 𝑥2𝑚

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑚

] ,  𝒚 = [

𝑦1

𝑦2

⋮
𝑦𝑛

] 

 

(1) 

The CDI dataset's comprehensive coverage and detailed information make it particularly valuable for 

machine learning applications in chronic disease research. The diversity of attributes allows for the exploration 

of complex interactions between demographic factors, health behaviors, and clinical measures. For example, 

understanding how lifestyle factors such as physical activity and diet interact with clinical measures like blood 

pressure and cholesterol can provide deeper insights into the risk factors and prevention strategies for chronic 

diseases. 

 

 

Figure 1. Research Methodology 

 

2.2. Data Acquisition 

The dataset is accessed through the CDC's online data repository, which ensures that it is up-to-date and 

standardized. The data acquisition process involves downloading the dataset in CSV format from the CDC's 

website, loading the dataset into a pandas DataFrame for preprocessing and analysis, and performing basic 

exploratory data analysis (EDA) to understand the structure and characteristics of the dataset, including 

summary statistics and data visualization. Furthermore, a summary of the CDI dataset provides an overview of 

the key attributes and their distributions. Summary statistics such as mean, median, standard deviation, and 

range are calculated for numerical attributes as presented in the equation (2) – (5), while frequency distributions 

are determined for categorical attributes. This initial exploration helps in identifying potential data quality 

issues such as missing values and outliers, which are addressed in the data preprocessing stage. 
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𝑥‾ =
1

𝑛
∑

𝑖=1

𝑛

  𝑥𝑖  

 

(2) 

Media n(𝑥) = 𝑥
(

𝑛+1
2

)
 

 

(3) 

𝜎𝑥 = √
1

𝑛 − 1
∑

𝑖=1

𝑛

  (𝑥𝑖 − 𝑥‾)2 

(4) 

Range (𝑥) = 𝑥max − 𝑥min (5) 

 

2.3. Data Preprocessing 

Given the nature of the CDI dataset, some attributes contain missing values. To address this, we 

employed the following strategies, for numerical attributes such as DataValue, LowConfidenceLimit, and 

HighConfidenceLimit, missing values were imputed using the median of the respective columns. This approach 

is robust to outliers and provides a central tendency measure for imputation. The imputation can be expressed 

mathematically as follows: Let (𝑥𝑖) represent the ( 𝑖 )-th value of a numerical attribute. If (𝑥𝑖) is missing, it is 

replaced by the median (�̃�) of the attribute, calculated as presented in the equation 6. 

 

�̃� = {

𝑥
(

𝑛+1
2

)
 if 𝑛 is odd 

1

2
(𝑥

(
𝑛
2

)
+ 𝑥

(
𝑛
2

+1)
)  if 𝑛 is even 

 (6) 

 

Where ( n ) is the number of non-missing values in the attribute. Columns with all missing values were 

dropped from the dataset to avoid introducing noise or irrelevant information into the models. This step ensures 

that the dataset only contains relevant and complete information for the analysis. In addition, the dataset 

contains several categorical variables that need to be converted into a numerical format suitable for machine 

learning algorithms. We used label encoding for this purpose where each categorical variable was transformed 

into an integer representation using the LabelEncoder from the sklearn library. Let C be a categorical variable 

with unique categories ({𝑐1, 𝑐2, … , 𝑐𝑘}). The LabelEncoder maps each category (𝑐𝑗) to an integer (j) where 

𝐶 → {1, 2, … , 𝑘}. Furthermore, a dictionary of label encoders was maintained for each categorical column to 

ensure consistent encoding across different splits of the dataset. Formally, for a categorical variable ( 𝐶 ), let 

(𝐿𝐶) be the label encoder such that 𝐿𝐶(𝑐𝑗) = 𝑗 for 𝑗 ∈ {1,2, … , 𝑘}, this encoding ensures that the categorical 

variables are consistently transformed into a numerical format, making them suitable for machine learning 

algorithms while preserving the categorical nature of the data. Consider a small example where we have a 

dataset with the following attributes: Age, Sex,  Race, DataValue, LowConfidenceLimit, and 

HighConfidenceLimit. Suppose the DataValue and LowConfidenceLimit columns have missing values. The 

preprocessing steps would be as follows: First, we impute the missing values in the DataValue and 

LowConfidenceLimit columns with their respective medians as presented in the equation 7 and 8. 

 

DataValuemissing → DataValuẽ , (7) 

  

LowConfidenceLimitmissing → LowConfidenceLimit̃  (8) 

 

Next, we drop any columns that are entirely missing. In this example, assume none of the columns are 

entirely missing. Then, we apply label encoding to the categorical variables Sex and Race. Let Sex have 

categories {𝑀𝑎𝑙𝑒, 𝐹𝑒𝑚𝑎𝑙𝑒} and Race have categories {𝑊ℎ𝑖𝑡𝑒, 𝐵𝑙𝑎𝑐𝑘, 𝐴𝑠𝑖𝑎𝑛}. The label encoders map these 

categories to integers Sex → {1 (Male), 2 (Female)},  Race → {1 (White), 2 (Black), 3 (Asian)}. By 

following these preprocessing steps, we ensure that the dataset is clean, complete, and ready for the subsequent 

stages of machine learning model training and evaluation. 

 

2.4. Model Selection 

We selected a diverse set of machine learning models to compare their performance in classifying 

chronic disease indicators. The chosen models include the Random Forest Classifier, Logistic Regression, 

Support Vector Machine (SVM), and Gradient Boosting Classifier. Each model offers unique advantages and 

methodologies, allowing us to evaluate their effectiveness in this specific context. The Random Forest 

Classifier is an ensemble method that constructs multiple decision trees and combines their outputs to improve 

accuracy and reduce overfitting. Each decision tree is trained on a bootstrap sample of the dataset, and the final 

prediction is obtained by aggregating the predictions of all individual trees, typically through majority voting 
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for classification tasks. The key concept of the Random Forest is to reduce the variance of the model without 

significantly increasing the bias. Mathematically, the prediction (�̂�) for an input (𝑥) is given by �̂� =

majority_vote(𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝐵(𝑥)) where (𝑇𝑖) represents the ( 𝑖 )-th decision tree in the forest, and ( 𝐵 ) 

is the total number of trees. Second model that we used is logistic regression, the logistic Regression is a linear 

model used for binary classification that can be extended to multiclass problems using techniques such as one-

vs-rest (OvR) or multinomial logistic regression.  

The model estimates the probability that a given input (𝑥) belongs to a particular class by applying the 

logistic function to a linear combination of the input features. For binary classification, the probability 

(𝑃( 𝑦 = 1 ∣∣ 𝑥 )) is modeled as: 𝑃( 𝑦 = 1 ∣∣ 𝑥 ) = σ(𝑤⊤𝑥 + 𝑏) =
1

1+𝑒−(𝑤⊤𝑥+𝑏)
, where (𝑤) is the weight vector, 

( 𝑏 ) is the bias term, and ( σ) is the logistic sigmoid function. The model parameters (𝑤) and ( 𝑏 ) are learned 

by maximizing the likelihood function or equivalently minimizing the cross-entropy loss. Third model that we 

used is Support Vector Machine (SVM), SVM is a robust classifier that finds the optimal hyperplane for 

separating classes in a high-dimensional space. The objective of SVM is to maximize the margin between the 

closest points of the different classes, known as support vectors. For a linearly separable case, the decision 

function is defined as 𝑓(𝑥) = 𝑤⊤𝑥 + 𝑏, the optimization problem for SVM can be formulated as presented in 

the equation 9. 

 

min
𝒘,𝑏

1

2
|𝒘|2 subject to 𝑦𝑖(𝒘⊤𝒙𝒊 + 𝑏) ≥ 1, ∀𝑖 

(9) 

 

where (𝑦𝑖) are the class labels. For non-linearly separable data, kernel functions are used to transform 

the input space into a higher-dimensional space where a linear separator can be found. Last model that we used 

is Gradient Boosting Classifier, the method is an ensemble technique that builds sequential models, each 

correcting the errors of its predecessor, to achieve high predictive performance. The model is built by iteratively 

adding weak learners, typically decision trees, to the ensemble. Each new tree is trained to approximate the 

negative gradient of the loss function with respect to the model's predictions. Mathematically, the model 

prediction (𝑦�̂�)𝑓𝑜𝑟 𝑎𝑛𝑖𝑛𝑝𝑢𝑡(𝑥𝑖) 𝑎𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑚) is updated as 𝑦𝑖
(𝑚)̂

= 𝑦𝑖
(𝑚−1)̂

+ νℎ𝑚(𝑥𝑖), where (𝑦𝑖
(𝑚−1)̂

) is 

the prediction from the previous iteration, (ℎ𝑚(𝑥𝑖)) is the new weak learner added at iteration ( 𝑚 ), and ( ν) 

is the learning rate. The weak learner (ℎ𝑚) is trained to minimize the residual errors of the current ensemble. 

 

2.5. Model Training and Evaluation 

The selected models were trained on the training dataset and evaluated on the testing dataset through a 

series of methodical steps to ensure robust performance assessment. The process involved training, prediction, 

and evaluation metrics, which are detailed below. The models were trained using the fit method on the training 

data. Let 𝑋𝑡𝑟𝑎𝑖𝑛 and (𝑦𝑡𝑟𝑎𝑖𝑛) denote the training feature matrix and the training target vector, respectively. Each 

model (M) is trained by minimizing an objective function (ℒ), which could be specific to the algorithm used. 

The training process can be represented as 𝑀 = 𝑓𝑖𝑡(𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛), for instance, in the case of logistic 

regression, the objective is to minimize the negative log-likelihood (or equivalently, the cross-entropy loss) to 

estimate the model parameters (𝑤) and ( 𝑏 ). Furthermore, the trained models were then used to predict the 

target variable on the testing data. Let (𝑋ts) represent the testing feature matrix. The predictions (�̂�) are 

obtained as �̂� = 𝑀(𝑋ts). This step involves applying the learned model parameters to the input features of the 

testing data to produce the predicted labels. 

 

2.6. Evaluation Metrics 

The model performance was evaluated using multiple metrics to provide a comprehensive assessment 

of the model's predictive capabilities. These metrics include accuracy, precision, recall, F1 score, classification 

report, and confusion matrix. The accuracy metric measures the proportion of correctly predicted instances out 

of the total instances. It is given by Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 where ( 𝑇𝑃 ) is the number of true positives, 

( 𝑇𝑁 ) is the number of true negatives, ( 𝐹𝑃 ) is the number of false positives, and ( 𝐹𝑁 ) is the number of 

false negatives. Secondly, we used precision where the precision measures the proportion of true positive 

predictions out of all positive predictions. It is defined as Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
. Thirdly, we used recall, where 

recall, also known as sensitivity, measures the proportion of true positive predictions out of all actual positives. 

It is given by Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
, Lastly we used F1 score where the F1 score is the harmonic mean of precision 

and recall, providing a single metric that balances both. It is calculated as F1 Score = 2 ×
Precision×Recall

Precision+Recall
. 
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3. RESULTS AND DISCUSSION  

In this section, we present the results of our machine learning models applied to the U.S. Chronic 

Disease Indicators (CDI) dataset. The models evaluated include Gradient Boosting Classifier, Support Vector 

Machine (SVM), Logistic Regression, and Random Forest. We compare their performance using metrics such 

as accuracy, precision, recall, F1 score, classification report, and confusion matrix. These metrics provide a 

comprehensive assessment of each model's effectiveness in classifying chronic disease indicators. 

 

3.1.  Gradient Boosting Classifier Performance 

The Gradient Boosting Classifier achieved an accuracy of 0.6436, with a precision of 0.6372, recall of 

0.6436, and an F1 score of 0.6388. The classification report indicates varied performance across different 

classes. For instance, class 0 (presumably a specific chronic disease indicator) had a precision of 0.49, recall 

of 0.52, and F1 score of 0.51, highlighting moderate predictive capability. Notably, the model performed 

exceptionally well in classifying classes 4, 7, 9, 10, and 11, with precision and recall values often exceeding 

0.70 as presented in the table 2. This suggests that the model is particularly effective for certain chronic disease 

indicators but may require improvement for others. The Gradient Boosting Classifier's superior performance, 

as indicated by its highest accuracy of 0.6436, demonstrates its ability to handle the complexities of the dataset. 

This model's strength lies in its iterative boosting process, which sequentially reduces errors from previous 

iterations, thereby enhancing prediction accuracy. The high precision and recall for classes 4, 7, 9, 10, and 11 

suggest that the model is particularly adept at distinguishing these chronic disease indicators, possibly due to 

their distinctive feature patterns. The variability in performance across different classes highlights the need for 

further refinement. For instance, the lower performance in classes 0, 1, and 2 suggests that these classes may 

have overlapping feature distributions or that the model requires additional tuning, such as adjusting learning 

rates or increasing the number of estimators. 

 

3.2.     Support Vector Machine (SVM) Performance 

The SVM model achieved an accuracy of 0.4797, with a precision of 0.5240, recall of 0.4797, and an 

F1 score of 0.4750. The classification report shows significant variability in performance across different 

classes. For instance, class 0 had a precision of 0.09 and a recall of 0.54, indicating poor precision but relatively 

high recall. This disparity suggests that the SVM model may be generating many false positives for certain 

classes, thus affecting overall precision. Conversely, the model exhibited strong performance for classes 3, 6, 

9, 10, and 11, with recall values often close to or at 1.00, indicating high sensitivity for these classes as 

presented in the table 3. The SVM model's performance is characterized by a moderate overall accuracy of 

0.4797. Its high recall values for classes 3, 6, 9, 10, and 11 indicate that the model is highly sensitive to these 

classes, effectively identifying most true positive cases. However, the low precision for class 0 (0.09) and high 

recall (0.54) imply that the model generates many false positives, thus affecting its precision. This issue can be 

addressed by optimizing the regularization parameter (C) and kernel type to better balance precision and recall. 

The SVM's ability to perform well in certain classes suggests that the chosen kernel function effectively maps 

the input features into a higher-dimensional space where these classes are more separable. However, the 

model's overall performance indicates that it may not be the best choice for this particular dataset, given the 

substantial variability in class performance. 

 

3.3.     Logistic Regression Performance 

The Logistic Regression model attained an accuracy of 0.5244, with a precision of 0.5248, recall of 

0.5244, and an F1 score of 0.5178. The classification report reveals significant inconsistencies, particularly in 

classes 3, 10, and 11, where the model failed to make correct predictions, resulting in precision and recall 

values of 0.00. However, the model showed relatively balanced performance for classes 1, 4, 6, 7, and 9, with 

precision and recall values around 0.40 to 0.65 as presented in the table 4. These results suggest that while 

Logistic Regression can provide reasonable performance for some classes, it struggles significantly with others. 

Logistic Regression's performance, with an accuracy of 0.5244, reflects its capability to provide a baseline 

comparison for other models. The model's balanced performance in certain classes, such as 1, 4, 6, 7, and 9, 

indicates that it can handle linearly separable classes reasonably well. However, the poor performance in 

classes 3, 10, and 11, where precision and recall are zero, suggests that these classes may not be linearly 

separable, leading to misclassification. Improving Logistic Regression's performance could involve using more 

advanced techniques such as regularization adjustments or employing polynomial features to capture non-

linear relationships in the data. However, given its relatively lower performance compared to Gradient 

Boosting, it may not be the optimal model for this dataset. 

 

3.4.     Random Forest Classifier 

The Random Forest Classifier achieved an accuracy of 0.4798, with a precision of 0.4809, recall of 

0.4798, and an F1 score of 0.4803. The classification report indicates a mixed performance, with the model 
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showing reasonable effectiveness for classes 1, 2, 4, 6, 7, 8, and 9, where precision and recall values were 

around 0.40 to 0.72 as presented in the table 5. However, the model struggled with class 0, which had a 

precision and recall of 0.17, indicating a high number of false positives and false negatives. The model 

performed exceptionally well for classes 10 and 11, achieving perfect scores in both precision and recall. The 

Random Forest Classifier's performance, with an accuracy of 0.4798, reflects its ensemble nature, which helps 

in reducing overfitting and capturing complex interactions in the data. The model's strength is evident in its 

reasonable performance across most classes, particularly classes 1, 2, 4, 6, 7, 8, and 9. The high performance 

in classes 10 and 11, where precision and recall are perfect, indicates that the model can handle certain classes 

with distinctive features very well. However, the poor performance in class 0, with precision and recall both at 

0.17, indicates that the model struggles with classes having overlapping feature distributions. Further tuning, 

such as adjusting the number of trees, maximum depth, and minimum samples per split, could enhance the 

model's performance. 

 

3.5.     Discussion 

The results indicate that the Gradient Boosting Classifier outperforms the other models in terms of 

accuracy, precision, recall, and F1 score as presented in the table 1. This model's iterative boosting process 

effectively reduces errors and enhances prediction accuracy, making it the most suitable choice for classifying 

chronic disease indicators in the CDI dataset. However, the variability in performance across different classes 

suggests that further refinement is necessary to improve the model's robustness. The SVM and Random Forest 

models show moderate performance, with notable strengths in specific classes. Their performance can be 

improved through hyperparameter tuning and by employing advanced techniques such as ensemble methods 

for SVM or feature importance analysis for Random Forest to better understand and enhance model predictions. 

Logistic Regression provides a reasonable baseline but struggles with non-linearly separable classes. Its 

performance could be improved with more advanced techniques, but it remains less effective compared to 

Gradient Boosting. In conclusion, the Gradient Boosting Classifier's superior performance makes it the 

preferred model for this study. Future work should focus on further tuning and refining this model to enhance 

its performance across all classes. Additionally, exploring hybrid models that combine the strengths of different 

algorithms could provide further improvements in classifying chronic disease indicators. One limitation of this 

study is the inherent class imbalance in the dataset, which can affect model performance. Techniques such as 

oversampling, undersampling, or synthetic data generation (e.g., SMOTE) could be employed to address this 

issue. Additionally, the models' interpretability could be enhanced by using techniques such as SHAP (SHapley 

Additive exPlanations) values to understand feature contributions to model predictions. 

 

Table 1. Model Performance Summary 

Metric Gradient Boosting SVM Logistic Regression Random Forest 

Accuracy 0.6436 0.4797 0.5244 0.4798 

Precision 0.6372 0.524 0.5248 0.4809 

Recall 0.6436 0.4797 0.5244 0.4798 

F1 Score 0.6388 0.475 0.5178 0.4803 

 

Table 2. Classification Report - Gradient Boosting 

Class Precision Recall F1-Score Support 

0.0 0.49 0.52 0.51 1305.0 

1.0 0.53 0.46 0.49 15196.0 

2.0 0.56 0.44 0.49 4787.0 

3.0 0.33 0.27 0.3 11.0 

4.0 0.73 0.79 0.76 1079.0 

5.0 0.62 0.59 0.6 1721.0 

6.0 0.79 0.73 0.76 1171.0 

7.0 0.71 0.76 0.73 25850.0 

8.0 0.54 0.59 0.56 5585.0 

9.0 0.77 0.83 0.8 5576.0 

10.0 1.0 1.0 1.0 36.0 

11.0 1.0 1.0 1.0 32.0 

 

Table 3. Classification Report - SVM 

Class Precision Recall F1-Score Support 

0.0 0.09 0.54 0.15 1305.0 

1.0 0.46 0.23 0.3 15196.0 

2.0 0.43 0.24 0.31 4787.0 

3.0 0.62 0.91 0.74 11.0 

4.0 0.59 0.43 0.5 1079.0 
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Class Precision Recall F1-Score Support 

5.0 0.56 0.51 0.54 1721.0 

6.0 0.49 0.94 0.64 1171.0 

7.0 0.61 0.59 0.6 25850.0 

8.0 0.5 0.3 0.37 5585.0 

9.0 0.45 0.93 0.61 5576.0 

10.0 0.65 1.0 0.79 36.0 

11.0 1.0 1.0 1.0 32.0 

 

Table 4. Classification Report - Logistic Regression 

Class Precision Recall F1-Score Support 

0.0 0.4 0.16 0.23 1305.0 

1.0 0.44 0.47 0.46 15196.0 

2.0 0.4 0.28 0.33 4787.0 

3.0 0.0 0.0 0.0 11.0 

4.0 0.41 0.52 0.46 1079.0 

5.0 0.46 0.25 0.33 1721.0 

6.0 0.54 0.52 0.53 1171.0 

7.0 0.55 0.65 0.6 25850.0 

8.0 0.45 0.34 0.39 5585.0 

9.0 0.89 0.67 0.76 5576.0 

10.0 0.0 0.0 0.0 36.0 

11.0 0.0 0.0 0.0 32.0 

 

Table 5. Classification Report - Random Forest 

Class Precision Recall F1-Score Support 

0.0 0.17 0.17 0.17 1305.0 

1.0 0.28 0.28 0.28 15196.0 

2.0 0.4 0.41 0.41 4787.0 

3.0 0.62 0.91 0.74 11.0 

4.0 0.62 0.64 0.63 1079.0 

5.0 0.35 0.34 0.35 1721.0 

6.0 0.66 0.64 0.65 1171.0 

7.0 0.57 0.57 0.57 25850.0 

8.0 0.47 0.46 0.47 5585.0 

9.0 0.72 0.72 0.72 5576.0 

10.0 1.0 1.0 1.0 36.0 

11.0 1.0 1.0 1.0 32.0 

  

4. CONCLUSION  

This study aimed to evaluate the performance of various machine learning models in classifying chronic 

disease indicators using the U.S. Chronic Disease Indicators (CDI) dataset. The models assessed included 

Gradient Boosting Classifier, Support Vector Machine (SVM), Logistic Regression, and Random Forest 

Classifier. Through comprehensive evaluation using metrics such as accuracy, precision, recall, F1 score, 

classification report, and confusion matrix, we identified the strengths and limitations of each model. Among 

the evaluated models, the Gradient Boosting Classifier demonstrated the best overall performance, achieving 

the highest accuracy of 0.6436 and balanced precision, recall, and F1 scores. This model's iterative boosting 

process effectively reduced errors, making it particularly adept at distinguishing between various chronic 

disease indicators. However, its performance varied across different classes, suggesting the need for further 

refinement and tuning to improve robustness. The SVM and Random Forest models showed moderate 

performance with notable strengths in specific classes. Their performance can be enhanced through 

hyperparameter tuning and the application of advanced techniques. Logistic Regression, while providing a 

reasonable baseline, struggled with non-linearly separable classes and demonstrated lower overall effectiveness 

compared to Gradient Boosting. This study highlights the potential of machine learning models, particularly 

ensemble methods like Gradient Boosting, in accurately classifying chronic disease indicators. However, it 

also underscores the importance of addressing class imbalances and further refining models to enhance their 

applicability and robustness. Future work should focus on refining the Gradient Boosting Classifier, exploring 

hybrid models that combine the strengths of different algorithms, and incorporating domain knowledge to 

improve model interpretability. Additionally, addressing dataset limitations such as class imbalance and 

expanding the dataset to include more diverse chronic disease indicators could further enhance model 

performance and generalizability. 
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